5. Niobium Cavity Fabrication

- **5.1 Deep Drawing**
- **5.2 Trimming of half cell**
- **5.3 END group fabrication**
- 5.4 Final EBW assembly
- 5.5 Nb film coated cavity

Overview on cavity fabrication

Cavity fabrication and preparation sequences for the TESLA / TTF cavities at DESY

1st ILC workshop at KEK Tsukuba Japan A.Matheisen for DESY and the TESLA Collaboration

5.1 Deep Drawing

5.2 Trimming

Ishizuka Workshop

Trimming Configuration at Equator section

So far, KEK has used CBP 100-200µm to make smooth the equator EBW seam. The left trimming shape needs CBP 10 times, and the right trimming configuration needs only CBP twice.

Needed CBP ~10 times

CBP only twice!

Cornell trimming configuration is very useful to smooth the EBW seam by less CBP.

Fabrication Error on half-cell cup

height [mm]

EBW of Dumbbell with stiffener

Dumbbell with stiffener-ring after EBW.

Pull and extend dumbbells to insert stiffener-ring. => EBW (dumbbell + ring)

dumbbell.

EBW Conditions at KEK

Dumbbells and END Cups

5.3 END Grope fabrication -Beam Pipe fabrication (thicker Nb tube case)-

Rounding ends

Bending

Closing

After EBW

Press

押礼禅

通し帯

サポートリング

ニオブハイブ

Circular tube

Oil pump

HOM Coupler Parts

END base plate for Helium Vessel

Nb/SUS bonding by HIP

Stress concentration						
	A	В	С	D		
	[MPa]	[MPa]	[MPa]	[MPa]		
Nb/Cu/SUS316L	250	500	500			
Nb/Ti/SUS316L	100	100	200	470		
Nb/Ti/High Mn Steel	100	100	200	80		

	Thermal	expansion	coefficient
--	---------	-----------	-------------

	$\alpha = \frac{\int_{77K}^{300K} \alpha(T) dT}{300-77}$	[E-6/K]
SUS316L	16.0	
Cu	17.0	
High Mn steel	9.8	
Ti	8.4	
Nb	5.0	

EBW of END Group

5.4 Final EBW Assembly

EBW Assembly of Cavity

Four 9-cell ICHIRO high-gradient LL Cavities were successfully delivered to KEK ! (4 July 2005)

EBW of end-beam-pipes and cell-part

Completed Ichiro 9-cell Cavity

Kuroki Welding Company

5.5 Nb film coated cavity

LEP-II 352MHz niobium bulk cavity

Copper half cell before Nb coating (electropolished)

Nb Coating Method at CERN

190

Q-slope in Nb coated cavities

Problem: Q-slope

It is no problem at low gradient 5-10MV/m. It brings a serious Q dropping at high gradient. Many studies are under way but so far application of this technology has no hope for ILC.