1. Superconductivity Basics for SRF Cavity

Superconductivity

Microscopic Theory

Two Types of Superconductor

1937 by Schubnikov (experiment), 1957 Abrikosov (theory) **Type-II Type-I** <mark>λ</mark> ξ <u>λ</u> ξ \leq -M Vortex state -M Hc1 Hc Hc2 Hc $G_n - G_s = \frac{1}{2} \mu H_c^2 \equiv \int_0^{H_{c2}} M dH$

Vortex state

Critical magnetic field measurement

Example of demagnetization curve on Niobium (NingXia, Large Grain RRR=340)

Abrikosov's Theory for Type-II

$$H_{c} = \frac{\kappa}{\lambda^{2}} \frac{\hbar c}{\sqrt{2}e^{*}} = \frac{\kappa}{\lambda^{2}} \frac{(\hbar c/2e)}{2\pi\sqrt{2}} = \frac{\phi_{0}}{2\pi\sqrt{2}\lambda\xi}$$

$$H_{c} = \sqrt{2} \frac{\lambda}{\xi} \frac{\phi_{0}}{2\pi\sqrt{2}\lambda\xi} = \frac{\phi_{0}}{2\pi\xi^{2}}$$

$$H_{c1} = \frac{\phi_{o}}{4\pi\lambda^{2}} \ln(\frac{\lambda}{\xi} + 0.08)$$

$$\phi_{0} = \hbar c/2e = 2.0678 \times 10^{-7} Gauss \cdot cm^{2}$$

$$= 2.0678 \times 10^{-15} T \cdot m^{2}$$
Exercise I.
Show the formulas for ξ , λ by Hc,Hc2.
Get the T-dependences for ξ , H_{c2} , κ , H_{c}^{RF} .

$$= 2.0678 \times 10^{-15} T \cdot m^{2}$$
Expand for all T range (assumption)
$$\xi(T) = \xi(0) \cdot \sqrt{\frac{1 + (T/T_{c})^{2}}{1 - (T/T_{c})^{2}}} \qquad \kappa(T) = \frac{\kappa(0)}{1 + (T/T_{c})^{2}}$$

T-dependence of H_{C1}, H_C, H_{C2}

T-dependence of λ and ξ

Lab material, RRR>2000

T-dependence of K with Lab material

Attempt for RF Field limitation model Superconductor **Effective field strength** Vacuum $\mathbf{H}_{\mathbf{c}}^{\mathbf{Line}}(T) = \frac{\xi(T)}{\lambda(T)} \cdot \sqrt{2} \mathbf{H}_{\mathbf{c}}(T) = \frac{\sqrt{2}\mathbf{H}_{\mathbf{c}}(T)}{\kappa(T)} = \sqrt{2} \frac{\mathbf{H}_{\mathbf{c}}(0)}{\kappa(0)} \cdot \left| 1 - \left(\frac{T}{T_{\mathbf{c}}}\right)^4 \right|$ $\frac{1}{2}\mu\mathbf{H}^{2}\lambda^{2} - \frac{1}{2}\mu\mathbf{H}_{c}^{2}\xi^{2} = 0$ $H_c^{\text{Line}} = \frac{\xi}{\lambda} H_c = \frac{H_c}{\kappa}$ 3000 Hcr Nb Cornell **+-** TESLA-like KEK single 2500 LL single cell (\cdot) \triangle **Reentrant single cell** Ichiro single cell 2000 Vortex line Hcr [Oe] 1500 1000 $-\frac{1}{2}\mu H_c^2(\pi\xi^2)\cdot L$ 500 2λ 0 0.2 0.4 0.6 0.8 t (=T/Tc) $\frac{1}{2} \mu \mathbf{H}^2(\pi \lambda)^2 \cdot \mathbf{L}$ 1) Hp=1750 ± 100 Oe with Nb cavity→ Eacc ~ 40MV/m 2) The SRF technology is meeting the theoretical limit. 3) Nb₃Sn cavity has a very larger k(0), therefore the critical field is so small.

Checking of the model for other materials

Material point of view:

- Smaller heat loading for refrigerator \longrightarrow Higher T_C
- High gradient
 H_{RF}>Hc^{RF}, then normal conducting
 BF / H c

$$H_c^{RF} = \sqrt{2} \cdot \frac{\Pi_c}{\kappa}, \kappa : G - L \text{ parameter}$$

This is very much different from superconducting magnet

The material with higher Hc and smaller κ -value **f** Hc is high enough, Type-I material is better because of the smaller κ -value.

Good formability

Materials	Tc [K]	Hc,	Hc1	Туре	Fabrication
		[Gauss]			
Pb	7.2	803		Ι	Electroplating
Nb	9.25	1900,	1700	II	Deep drawing, film
Nb3Sn	18.2	5350,	300	II	Film
MgB2	39	4290,	300	II	Film

Niobium has higher Tc, Hc and enough formability.

Now, niobium is widely used for RF sc cavity production.

1.2 SRF Specifics and Constrains

Surface resistance is very very small.

Cavity performance strongly depends on the surface.
 Thermal conductivity @ superconducting state is very small.
 High thermal conductivity is very important.

Surface resistance of normal conducting Case

Maxwell Equations for conductor (ϵ , μ , $\rho = 0$)

$$\nabla \cdot \vec{B} = 0, \ \nabla \times \vec{E} + \mu \frac{\partial \vec{H}}{\partial t} = 0$$
$$\nabla \cdot \vec{D} = 0, \ \nabla \times \vec{H} - \varepsilon \frac{\partial \vec{E}}{\partial t} - \sigma \vec{E} = 0$$
$$\vec{J} = \sigma \vec{E} \quad \text{(Ohm's Law)}$$

$$\vec{\mathrm{E}}(\vec{\mathrm{x}},t) = \vec{\mathrm{E}}_{\ell}(\vec{\mathrm{x}},t) + \vec{\mathrm{E}}_{\mathrm{t}}(\vec{\mathrm{x}},t),$$
$$\vec{\mathrm{H}}(\vec{\mathrm{x}},t) = \vec{\mathrm{H}}_{\ell}(\vec{\mathrm{x}},t) + \vec{\mathrm{H}}_{\mathrm{t}}(\vec{\mathrm{x}},t)$$

From Maxwell Equation,

$$\frac{\partial \vec{H}_{\ell}}{\partial t} = 0, \quad \vec{E}_{\ell}(x,t) = \vec{E}_{\ell}(0) \cdot e^{-\frac{\sigma t}{\varepsilon}}$$

For the transvers,

Plane wave : $\vec{E}_t(\vec{x},t) = \vec{E}_t(0) \cdot \exp(i\vec{k} \cdot \vec{x} - \omega t)$

$$\vec{H}_{t}(\mathbf{x},t) = \frac{1}{\mu\omega} [\vec{k} \times \vec{E}_{t}(\vec{x},t)],$$
$$[k^{2} - (\varepsilon\mu\omega^{2} + i\mu\omega\sigma)] \begin{cases} \vec{E}_{t}(\vec{x},t) \\ \vec{H}_{t}(\vec{x},t) \end{cases} = 0$$

Normal Conducting Case, continued

Surface Impedance for normal conducting case

$$Z \equiv R_{s} + iX_{s} \equiv \frac{E_{t}}{H_{t}} \bigg|_{Surface} = \frac{\mu\omega}{k}$$

Exercise II.
Get the formula of Rs
for good electric conductor

$$R_{s} = \sqrt{\frac{\mu\omega}{2\sigma}} = \frac{1}{\sigma} \sqrt{\frac{\mu\sigma\omega}{2}} = \frac{1}{\sigma\delta}$$

$$P_{loss} = \frac{1}{2} R_{s} \cdot \int_{S} H_{s}^{2} dS$$

Surface resistance in superconductor (Two Fluid model)

General equation:
$$m \frac{\partial \mathbf{v}}{\partial t} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) - mv\mathbf{v}$$

Two-fluid model by Gorter and Casimir in 1933
 $\mathbf{J} = \mathbf{J}_s + \mathbf{J}_n$, $\mathbf{J}_s = n_s q_s \mathbf{v}$, $\mathbf{J}_n = n_n q_n \mathbf{v}$

Maxwell equation: neglecting the Lorentz term, $\mathbf{v} \times \mathbf{B} \ll 1$

$$m_{s} \frac{\partial \mathbf{v}_{s}}{\partial t} = q_{s} \mathbf{E} , \quad m_{s} = 2m_{e} , \quad q_{s} = -2e$$

$$m_{e} \frac{\partial \mathbf{v}_{n}}{\partial t} = q_{n} \mathbf{E} - m_{e} v \mathbf{v}_{n} , \quad q_{n} = -e$$

$$\mathbf{E} = \mathbf{E}_{0} e^{i\omega t} \Rightarrow \mathbf{J}_{s} = \frac{n_{s} q_{s}^{2}}{i\omega m_{s}} \mathbf{E} , \quad \mathbf{J}_{n} = \frac{n_{n} q_{n}^{2}}{i(\omega - iv)m_{e}} \mathbf{E}$$

$$\mathbf{J} = \left(\frac{n_{s} q_{s}^{2}}{i\omega m_{s}} + \frac{n_{n} e^{2}}{i(\omega - iv)m_{e}}\right) \mathbf{E}$$

$$v \gg \omega \Rightarrow \mathbf{J} = \left(\frac{n_{n} e^{2}}{v m_{e}} - i \frac{n_{s} q_{s}^{2}}{\omega m_{s}}\right) \mathbf{E} = \sigma E, \quad \sigma = \sigma_{n} - i\sigma_{s} \Rightarrow \mathbf{R}_{s} = \sqrt{\frac{\mu\omega}{2\sigma}}$$

Surface resistance in superconductor

$$\sigma_{n} = \frac{n_{n} \cdot e^{2} \cdot l}{m \cdot v_{F}} = \frac{e^{2} \cdot l}{m \cdot v_{F}} \cdot n_{s}(T = 0) \cdot e^{-\frac{\Delta}{k_{B} \cdot T}}$$

$$R_{S} = \frac{1}{2} \cdot (2\pi)^{2} \cdot \mu^{2} \cdot f^{2} \cdot \lambda_{L}^{3} \cdot l \cdot \frac{n_{s}(0)}{mv_{F}} \cdot e^{-\frac{\Delta}{k_{B} T}}$$

$$= A \cdot f^{2} \cdot e^{-\frac{\Delta}{k_{B} T}}$$
BCS Theory
$$R_{S}^{BCS}(T, \omega) = A(\lambda, \xi, \ell, T_{c}) \cdot \frac{f^{2}}{T} \cdot \exp(-\frac{\Delta}{k_{B} T})$$
Superconducting state

"Very Small" Surface Resistance in SRF Cavity

BCS Surface Resistance Calculation for 1.3 GHz niobium cavity at 4.25 and 2K

1.3 Thermal Conductivity

and

Residual Resistance Ratio (RRR)

Surface defects on the SRF cavities

Breakdown at the surface defects : "Thermal Instability"

Thermal conductivity

Cryostat

Thermal conductivity comparison with NC and SC

Thermal conductivity of Nb material at low temperature

Calculation of thermal conductivity based on Quantum mechanics

$$\kappa_{s}(T) = R(y) \cdot \left[\frac{\rho_{295K}}{L \cdot RRR \cdot T} + a \cdot T^{2} \right]^{-1} + \left[\frac{1}{D \cdot \exp(y) \cdot T^{2}} + \frac{1}{BIT^{3}} \right]^{-1}$$
e-impurities scatt. e- phonons scatt. lattice - phonons scatt. lattice - grain boundaries scatt.

$$L = 2.05E - 8, RRR = 200, \rho_{295K} = 14.5E - 8 \Omega m, a = 7.52E - 7$$

$$-y = \alpha \cdot \frac{T_{c}}{T}, \alpha = 1.53, T_{c} = 9.25K, T \le 0.6 \cdot T_{c}$$

$$D = 4.27E - 3, B = 4.34E3, l = 50 \mu m$$

$$R(y) = \frac{\kappa_{es}}{\kappa_{en}} = \frac{2F_{1}(-y) + 2y \ln(1 + e^{-y}) + \frac{y^{2}}{(1 + e^{y})}}{2F_{1}(0)}, \int_{F^{1}}^{0.001} \int_{0.001}^{0.001} \frac{\pi}{1 + e^{z+y}} dz$$

29

Calculated $\kappa_{sc}(T)$

Thermal conductivity of niobium in superconductivity @ 2K is 1/15 that of stainless at R.T. (15W/(m•K)) and 1/6800 of pure cooper at 4.2K

Linear relationship between κ_{sc} (2K, 4.25K) and RRR

31

RRR measurement

High RRR Material to Suppress the Thermal Instability

One has to control the defects smaller than $1\mu m$ radius. Use the material with RRR >200.

Impurities in Nb Material

Scattering mechanism limits both thermal conductivity and electric conductivity

RRR vs. Impurities

Umezawa's calculation (Tokyo Denkai).

History of RRR improvement in Tokyo Denkai

