3. SRF Cavity Design

3.1 CW Operation with SRF RF Cavity
3.2 LC Circuit Model
3.3 Pill Box Cavity
3.4 Realistic Cavity Cell Design Criteria
3.5 High Gradient Cavity Shape
3.6 Criteria for Multi-Cell Structures
3.7 Example of SRF Cavities

3.1 Sanding Wave (SW) Operation in SRF Cavity

SW Scheme in SRF Cavity Operation

Standing wave (CW) is used in SRF cavity acceleration !

Synchronic acceleration and max of $(R/Q)_{acc} \Leftrightarrow I_{active} = NI_{cell} = NcB/(2f)$ and the injection takes place at an optimum phase ϕ_{opt} which ensures that particles will arrive at the mid-plane of the first cell when E_{acc} reaches its maximum (+q passing to the right) or minimum (-q passing to the right).

Transit Time Factor Due to SW Operation

- *T* : Transit time factor
- $T = \frac{2}{\pi} = 0.637 \text{ (for Pill Box Cavity)}$ $Eacc \equiv \frac{V}{d} = E_0 T$

Acceleration efficiency is automatically reduced by ~ 40% in the SW scheme.

Why TW Operation is not used with SRF Cavities ?

The merit of SRF is that RF consumption is very small ! The damped RF has to be reused. The wave-guide returned RF should be superconduting, which makes very complex cryogenic system.

3.2 LC Circuit Model

LC Circuit Model for RF Cavity

LC Equivalent Circuit of Cavity

When resistance in not zero, the resonance frequency has a band width.

Resonance Spectrum and Band Width

Cavity wall loss:
$$P_{loss}$$
 $P_{loss} = \frac{1}{2}R_s \int i^2 dS$, $i = H$
Damping of Stored Energy

$$\frac{\mathrm{d}\mathbf{U}}{\mathrm{d}\mathbf{t}} = -\mathbf{P}_{\mathbf{loss}} = -\frac{\omega \mathbf{U}}{\mathbf{Q}} \implies \mathbf{U} = \mathbf{U}_{\mathbf{0}} \mathbf{e}^{-\omega \mathbf{t}/\mathbf{Q}} \qquad Q \equiv \frac{\omega U}{P_{loss}} = \frac{Const}{R_s}$$
$$U_0(t) = \frac{\varepsilon_0}{2} E_0^2(t) \implies E(t) = E_0 e^{-\omega_0 t/2Q} e^{-i\omega t} = \int_{-\infty}^{\infty} E(\omega) e^{-i\omega t} d\omega$$
urrier Transformation

$$E(\omega) = \frac{1}{2\pi} \int_0^\infty E_0 e^{-\frac{\omega_0 t}{2Q}} e^{-i\omega_0 t} e^{i\omega t} dt = \frac{1}{2\pi} \int_0^\infty E_0 \exp(-\frac{\omega_0 t}{2Q} - i\omega_0 t + i\omega t) dt = \frac{1}{2\pi} \frac{E_0}{-\frac{\omega_0}{2Q} + i(\omega - \omega_0)}$$

Resonance Spectrum of RF power in Frequency domain

F

$$P|E(\omega)|^{2} = \left|\frac{A}{-\frac{\omega_{0}}{2Q} + i(\omega - \omega_{0})}\right|^{2} = \frac{A}{-\left(\frac{\omega_{0}}{2Q}\right)^{2} + (\omega - \omega_{0})^{2}}$$
$$Q = \frac{f_{0}}{2\Delta f} (\omega_{0} = 2\pi f_{0}) \quad \Longrightarrow \quad \Delta f = \frac{f_{0}}{2Q} \propto \frac{f_{0}}{2} R_{S}$$

3.3 Pill Box Cavity

Electro-magnetic field in a waveguide

Maxwell equations in a waveguide

$$\nabla \times \mathbf{E} = i\frac{\omega}{c}\mathbf{B}, \nabla \cdot \mathbf{B} = 0, \quad \nabla \times \mathbf{B} = -i\mu\varepsilon\frac{\omega}{c}\mathbf{E}, \quad \nabla \cdot \mathbf{E} = 0, \quad \rho = 0, \quad \mathbf{j} = 0$$

$$\left(\nabla^{2} + \mu\varepsilon\frac{\omega^{2}}{c^{2}}\right)\left\{\frac{\mathbf{E}}{\mathbf{B}}\right\} = 0, \quad \mathbf{k}: \text{ wavevector,}$$

$$\mathbf{E}(x, y, z, t) = \mathbf{E}(x, y)\exp(\pm ikz - i\omega t), \quad k: \text{ wavevector,}$$

$$\mathbf{B}(x, y, x, t) = \mathbf{B}(x, y)\exp(\pm ikz - i\omega t),$$

$$\left[\nabla_{i}^{2} + (\varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2})\right]\left\{\frac{\mathbf{E}}{\mathbf{B}}\right\} = 0, \quad \nabla_{i}^{2} \equiv \nabla^{2} - \frac{\partial^{2}}{\partial^{2}z}, \quad \mathbf{E} = E_{z}\mathbf{e}_{z} + \mathbf{E}_{i}, \quad \mathbf{B} = B_{z}\mathbf{e}_{z} + \mathbf{B}_{i}$$

$$\mathbf{B}_{i} = \frac{1}{\left(\varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2}\right)}\left[\nabla_{i}\left(\frac{\partial B_{z}}{\partial z}\right) + i\varepsilon\mu\frac{\omega}{c}\mathbf{e}_{z} \times \nabla_{i}E_{z}\right], \quad \mathbf{E} \text{ cercise IV.}$$

$$\mathbf{E}_{i} = \frac{1}{\left(\varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2}\right)}\left[\nabla_{i}\left(\frac{\partial E_{z}}{\partial z}\right) - i\frac{\omega}{c}\mathbf{e}_{z} \times \nabla_{i}B_{z}\right]$$

$$\mathbf{G}_{i}$$

TM-mode :
$$B_z = 0, E_z \neq 0$$
 \Longrightarrow Can accelerate beam Beam
 $B_t = \frac{i\varepsilon\mu\frac{\omega}{c}}{\left(\varepsilon\mu\frac{\omega^2}{c^2} - k^2\right)} [e_z \times \nabla_t E_z],$
 $E_t = \frac{1}{\left(\varepsilon\mu\frac{\omega^2}{c^2} - k^2\right)} \nabla_t \left(\frac{\partial E_z}{\partial z}\right),$
 $\left[\nabla_t^2 E_z + (\varepsilon\mu\frac{\omega^2}{c^2} - k^2)\right] E_z = 0,$ \Longrightarrow Solve the eigenvalue problem, get k and Ez

Boundary condition $E_z|_{S} = 0$ (\because $\mathbf{n} \times \mathbf{E} = 0$ on the surface of perfect conductor) $\frac{B_z}{n}|_{S} = 0$ (\because $\mathbf{n} \cdot \mathbf{B} = 0$ on the surface,

but automatically satisfied by the TM - mode condition)

TE-Mode Assign

TE-mode : $E_z = 0, B_z \neq 0$ $\mathbf{B}_t = \frac{i\varepsilon\mu\frac{\omega}{c}}{(\varepsilon\mu\frac{\omega^2}{c^2} - k^2)} \nabla_t \left(\frac{\partial B_z}{\partial z}\right),$

Can not accelerate beam,

Kicks the beam.

Boundary condition $E_z|_S = 0$ (\therefore $\mathbf{n} \times \mathbf{E} = 0$ on the surface of perfect conductor but automatically satisfied by the TE- mode condition)

$$\frac{B_z}{n}|_S = 0 \ (:: \mathbf{n} \cdot \mathbf{B} = 0 \text{ on the surface})$$

71

Eigevalue problem

 $\psi(x,y) = E_z(x,y)$ for TM-mode or $B_z(x,y)$ for TE-mode $(\bar{\nabla}_t^2 + \gamma^2)\psi = 0$, $\psi|_S = 0$ (for TM - mode) or $-\frac{1}{n}\psi|_S = 0$ (for TE - mode)

$$\gamma^2 = \epsilon \mu \frac{\omega^2}{c^2} - k^2 \ge 0$$

From the boundary condition,

$$\gamma^2 = \gamma_{\lambda}^2, \ \psi = \psi_{\lambda} \quad (\lambda = 1, 2, \cdots)$$

 $k_{\lambda}^2 = \varepsilon \mu \frac{\omega^2}{c^2} - \gamma_{\lambda}^2$

If $\omega < c \frac{\gamma_{\lambda}}{\sqrt{\epsilon \mu}}$, then k_{λ} is an imaginal number. The wave is damped in the waveguide.

$$\omega_{\lambda} = c \frac{\gamma_{\lambda}}{\sqrt{\varepsilon \mu}} \cdots \text{cutoff frequency}$$

When $\omega \ge \omega_{\lambda}$, wave number k_{λ} is a real number,

then the wave can propagate into the waveguide.

TM-Modes in a Pill Box Cavity

TM-modes

 $\mathbf{E}(x, y, z, t) = \mathbf{E}(x, y) \exp(ikz - i\omega t)$

When shorted at z = 0 and z = d, then the wave makes a standing wave.

 $\therefore \mathbf{E}(x, y, z, t) = [\mathbf{A}(x, y)\cos(kz) + \mathbf{B}(x, y)\sin(kz)]\exp(-i\omega t)$

If the cavity is made from perfect conductor, $E_t = 0$ at z = 0 and d.

 $\therefore \mathbf{E}(x, y, z) = \mathbf{B}(x, y)\sin(kz) \text{ and } \sin(kd) = 0 \Rightarrow kd = p\pi(p = 0, 1, 2, \dots) \Rightarrow k = \frac{p\pi}{d}$ $\mathbf{E}_{z}(x, y, z) = \Psi(x, y, z)\mathbf{e}_{z} = \left[\mathbf{A}_{z}(x, y)\cos(kz) + \mathbf{B}_{z}(x, y)\sin(kz)\right]\mathbf{e}_{z}$ $\mathbf{E}_{t}(x, y, z,) = \frac{1}{\gamma^{2}}\nabla_{t}\left(\frac{\partial\Psi}{\partial z}\right), \text{ and the boundary condition: } \mathbf{E}_{t} = 0 \text{ at } z = 0.$

$$\Rightarrow \Psi = B_z(x, y)\cos(kz) = B_z(x, y)\cos(\frac{p\pi}{d}z)$$

Now one can solve the eigenvalue problem.

$$\left(\nabla_{t}^{2} + \gamma^{2}\right)\Psi = 0, \ \gamma^{2} = \varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2} = \varepsilon\mu\frac{\omega^{2}}{c^{2}} - \left(\frac{p\pi}{d}\right)^{2}$$

Cylindorical cordinate $(r, \theta, z), \ \Psi \to \Psi = B_{z}(r, \theta)$
$$\left(\nabla_{t}^{2} + \gamma^{2}\right)\Psi = \left(\frac{\partial^{2}}{\partial^{2}r} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2}}{\partial^{2}\theta}\right)\Psi + \gamma^{2}\Psi = 0$$

$$\Psi(r, \theta) = R(r) \cdot \Theta(\theta)$$

$$r^{2} \frac{\partial^{2} R(r)}{\partial^{2} r} + \frac{r}{R(r)} \frac{\partial R(r)}{\partial r} + \gamma^{2} r^{2} = -\frac{1}{\Theta(\theta)} \frac{\partial^{2} \Theta(\theta)}{\partial^{2} \theta}$$
$$-\frac{1}{\Theta(\theta)} \frac{\partial^{2} \Theta(\theta)}{\partial^{2} \theta} = m^{2} \Longrightarrow \Theta(\theta) = \Theta_{0} \exp(\pm im\theta), m = 0, 1, 2, \cdots$$

 Θ is for a single-value function at $\theta = 0 \sim 2\pi$.

$$\rho = \gamma r,$$

$$\frac{\partial^2 R}{\partial^2 \rho} + \frac{1}{\rho} \frac{\partial R}{\partial \rho} + (1 - \frac{m^2}{\rho^2})R = 0 \Longrightarrow R : mthBesselfunction(J_m)$$

For no divergence at $\rho = 0 \Rightarrow R(\rho) = J_m(\rho)$

Boundary condition: $E_z(r,\theta) = 0$ at $r = a \Rightarrow J_m(\gamma a) = 0 \Rightarrow \gamma a = \rho_{m,n}$: nth solution of J_m

$ ho_{m,n}$	n=1	n=2	n=3
m=0	$\rho_{0,1} = 2.405$	$\rho_{0,2} = 5.520$	$\rho_{0,3} = 8.654$
m=1	$\rho_{1,1} = 3.832$	$\rho_{1,2} = 7.016$	$\rho_{1,3} = 10.173$
m=2	$\rho_{2,1} = 5.136$	$\rho_{2,2} = 8.417$	$\rho_{2,3} = 11.620$

$$\gamma_{m,n} = \frac{\rho_{m,n}}{a}$$
, thus $\Psi(r,\theta) = J_m(\frac{\rho_{m,n}}{a} \cdot r) \cdot \exp(\pm im\theta)$,

Resonance frequency $(TM_{m,n,p} - mode)$

$$\omega_{m,n,p} = \frac{c}{\sqrt{\varepsilon\mu}} \sqrt{\frac{\rho_{m,n}}{a^2} + \frac{p^2 \pi^2}{d^2}}$$

74

For E_t and B_t , calculate

$$\begin{split} \mathbf{B}_{t} &= \frac{i\varepsilon\mu\frac{\omega}{c}}{\left(\varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2}\right)} \left[\mathbf{e}_{z} \times \nabla_{t}E_{z}\right], \\ \mathbf{E}_{t} &= \frac{1}{\left(\varepsilon\mu\frac{\omega^{2}}{c^{2}} - k^{2}\right)} \nabla_{t} \left(\frac{\partial E_{z}}{\partial z}\right), \\ \mathcal{T}M_{m,n,p} &- \text{mode} \\ E_{z} &= E_{o}\cos(kz)J_{m}(\frac{\rho_{m,n}}{a}r)\exp(-im\theta), \qquad B_{z} = 0 \\ E_{r} &= \frac{iE_{0}p\pi}{\gamma_{m,n,p}}\cos(\frac{p\pi}{d}z)\frac{\partial J_{m}(\rho)}{\partial\rho}\exp(-im\theta), \qquad B_{r} = -\frac{E_{0}m\varepsilon\mu\omega_{m,n,p}}{c}\cos(kz)J_{m}(\frac{\rho_{m,n}}{a}r)\exp(-im\theta) \\ E_{\theta} &= \frac{E_{0}mp\pi}{\gamma_{m,n,p}^{2}dc}\cos(\frac{p\pi}{d}z)J_{m}(\frac{\rho_{m,n}}{a}r)\exp(-im\theta), \qquad B_{\theta} = \frac{iE_{0}\varepsilon\mu\omega_{m,n,p}}{\gamma_{m,n,p}c}\cos(kz)\exp(-im\theta)\frac{\partial J_{m}(\rho)}{\partial\rho} \end{split}$$

TE_{mnp} Modes

Pill Box TM₀₁₀-Mode Single Cell Cavity Design

This is a very much instructive example for the RF cavity design. The essential is included in this example.

Exercise V.Make design a 1300MHz single cell Pill Box cavity1.What is the diameter of the cell?2. What is the cell length?

Summaries of Characteristic Parameters of RF cavity

Surface Impedance
$$Z[\Omega]$$
: $Z = \frac{E_{II}}{H_{II}} = R_{S} + iX$, $R_{S} = \frac{1}{\sigma\delta} = \sqrt{\frac{\mu\omega}{2\sigma}}$,
Skin depth δ [m]: $\delta = \sqrt{\frac{2}{\mu\omega\sigma}}$
Wall loss P_{loss} [W]: $P_{loss} = \frac{1}{2}R_{S}\int_{S}H_{s}^{2}ds$ $(=\frac{\pi R_{S}E_{o}^{2}}{(\mu/\varepsilon)}J_{1}^{2}(2.405) \cdot a \cdot (a + d)$ for pill box cavity)
Transit time factor T : $T = \frac{\int_{0}^{d}E_{z}e^{i(\omega \times \frac{Z}{c})}dz}{\int_{0}^{d}E_{z}dz}$ $(=\frac{2}{\pi}$ for pill box cavity)
Accelerating Voltage V : $V = \int_{0}^{d}E_{o}(\rho = 0, z)e^{i(\omega \frac{z}{c})}dz$ $(= dE_{o}T$ for pill box)
Accelerating gradient E_{acc} : $E_{acc} = \frac{V}{d}$ $(= E_{o}T = 2\frac{E_{o}}{\pi}$ for pill box cavity)
Stored energy U: $U = \frac{1}{2}\mu\int_{V}H^{2}dv = \frac{1}{2}\varepsilon\int_{V}E^{2}dv$ $(=\frac{\pi\varepsilon E_{0}^{2}}{2} \cdot J_{1}^{2}(2.405) \cdot d \cdot a^{2}$ for pill box cavity
Unloaded Q-value Q_{0} : $Q_{0} = \frac{\omega \cdot U}{P_{loss}}$ $(=\omega \cdot \frac{\mu \cdot a^{2}d}{2 \cdot a(a + d)} \cdot \frac{1}{R_{s}}$ for pill box cavity)

Summaries of Characteristic parameters of RF cavity

Shunt impedance
$$\Re[\Omega]: R_{sh} = \frac{V^2}{P_{loss}}$$
 $\left(= \frac{4(V_{\mu})d^2}{\pi^3 R_S J_1^2 (2.405)a(a+d)} \text{ for pill box cavity} \right)$
Geometrical factor $\Gamma: \Gamma = Q_O \cdot R_S = \frac{\omega \mu \int_V H^2 dv}{\int_S H_S^2 ds}$ $\left(= \frac{\omega \mu da^2}{2(a^2 + ad)} \text{ for pill box cavity} \right) \Rightarrow R_S = \frac{\Gamma}{Q_O}$
 $\Re_Q': \qquad \left(\Re_Q' \right) = \frac{R_{sh}}{Q_O} = \frac{V^2}{\omega U}$ Goodness of the cavity shape No dependent on materia
 $E_{SP}/E_{acc} \quad \left(= \frac{\pi}{2} = 1.57 \text{ for pill box cavity} \right), H_{SP}/E_{acc} \quad \left(= 30.5 \frac{O_e}{MV/m} \text{ for pill box cavity} \right)$
Smaller value is better from field
emission problem point of view

Pill-box cavity maximum Eacc = 1750/30.5 = 57.4 MV/m

Frequency Dependence of Cavity Parameters

Characteristic Parameter	ω dependence Normal conducting	ω dependenceSuper conducting
R _S	$\omega^{\frac{1}{2}}$	ω^2
P _{loss}	$\omega^{-\frac{3}{2}}$	No dependence
U	ω^{-3}	ω^{-3}
Q ₀	$\omega^{-\frac{1}{2}}$	ω^{-2}
R _{sh}	$\omega^{-\frac{1}{2}}$	ω^{-2}
R _{sh} /L	$\omega^{\frac{1}{2}}$	ω^{-1}
Г	No dependence	No dependence
R/Q	No dependence	No dependence

Rsh per length linearly increases to $\sqrt{\omega}$, so normal conducting choose higher frequency, for example 11.4GHz @ warm LC.

3.4 Realistic Cavity Cell Design Criteria

Real Cavity Cell Design

- 1) Need a hole on the cavity for electron to pass the cavity
- 2) Need RF input port
- 3) HOM coupler port
- 4) Higher acceleration efficiency
- 5) Higher gradient Smaller Ep/Eacc : Field emission Smaller Hp/Eacc : Multipaction

HOM coupler

Cavity Design (single cell cavity)

All calculated values below refer to the mesh geometry only.
Field normalization (NORM = 0): EZERO = 1.00000 MV/m
Length used for E0 normalization = 10.76000 cm
Frequency (starting value = 1300.000) = 1293.77430 MHz
Particle rest mass energy = 0.510999 MeV
Beta = 1.0000000
Normalization factor for E0 = 1.000 MV/m = 7048.913
Transit-time factor Abs(T+iS) = 0.5454664
Stored energy = 0.0038869 Joules 2000
Using standard room-temperature copper.
Surface resistance = 9.38405 milliOhm
Normal-conductor resistivity = 1.72410 microOhm-cm
Operating temperature = 20.0000 C
Power dissipation = 1118.1551 W $-10 0 10$
Q = 28257.6 Shunt impedance = 96.230 MOhm/m
$Rs*Q = 265.171 Onm \qquad 2*1*1 = 28.652 \text{ MOHM/m}$
P/Q = 109.024 Onm wake loss parameter = 10.22137 V/pC Augreer memory is field on the outer well = 1729.9 A/m 140411 W/cm ² 2
Maximum H (at Z R = 3.32643.8.55466) = 1753.44 A/m , 1.44258 W/cm ² 2
Maximum F (at Z R = 4 75232 4 24425) = 0.946176 MV/m 0.02953 Kilp.
Batio of peak fields Bmax/Emax = 2.3288 mT/(MV/m) -10 0 10
Peak-to-average ratio $Emax/F0 = 0.9462$

Superfish outputs

f₀=1293.77430MHz Ploss=118.1551W RsQ=265.171 Ω Qo=28257.6 (Rsh/Q)=109.24 Ω Hp=1753.44 A/m Ep=0.946176 MV/m

Exercise VI.

Calculate the following cavity RF parameters from the Superfish outputs.

Rsh [Ω] = Accelerating Voltage V [MV]= RF wave length λ [m] = Gradient Eacc = V/L_{eff} [MV/m]= Hp/Eacc[Oe/(MV/m)] = Ep/Eacc = Eacc [MV/m] = $Z \cdot \sqrt{P_{loss} \cdot Q_o}$, Z= Geometrical factor Γ [Ω] =

,defined as $L_{eff} = \lambda/2$, use $1A/m = 4\pi 10^{-3}$ Oe

What are figures of merit for a cavity storing E-H energy?

$$W_n \equiv \text{stored energy of a mode } n : \{\omega_n, E_n, H_n\}$$

$$W_n \equiv \mu \int_V \frac{{H_n}^2}{2} dV = \varepsilon \int_V \frac{{E_n}^2}{2} dV$$

Quality Factors

The measure of the energy loss in the metal wall and due to the radiation via open ports:

Intrinsic
$$Q \equiv Qo$$

 $Q_{0,n} \equiv \frac{\omega_n \cdot W_n}{P_n} = \frac{\omega_n \cdot W_n}{\frac{R_{s,n}}{2} \int_{S} H_n^2 ds}$
 $Q_{ext,n} \equiv \frac{\omega_n \cdot W_n}{P_{rad,n}} = \frac{\omega_n \cdot W_n}{\frac{1}{2} \int_{S_{allports}} E_n \times H_n ds}$

J.Sekutwitz's Slide

J.Sekutwitz's Slide

Geometric Factor

The measure of the energy loss in the metal wall for the <u>unit</u> surface resistance $R_{s,n}$

$$G_{n} \equiv Q_{0,n} \cdot R_{s,n} = \frac{\omega_{n} \cdot W_{n} \cdot R_{s,n}}{P_{n}} = \frac{\omega_{n} \cdot W_{n}}{\frac{1}{2} \int_{S} H_{n}^{2} ds}$$

It is the ratio of the stored energy to the integral of $(\mathbf{H}_n)^2$ on the metal surface. It is independent of cavity material and depends on cavity shape. What are figures of merit for the beam-cavity interaction?

This interaction which is:

J.Sekutwitz's Slide

- Acceleration
- ✤ HOMs excitation

can be described in Frequency Domain (FD) or/and in Time Domain (TD).

Very Important RF Parameter (R/Q)

J.Sekutwitz's Slide

 $(R/Q)_n$, a "measure" of the energy exchange between point charge and mode n (FD).

(R/Q) for Accelerating Mode

J.Sekutwitz's Slide

For acceleration modes, V_n is calculated on the beam axis. (R/Q) means efficiency of the acceleration, which is independent on material. It means the goodness of cavity shape for beam acceleration.

For the accelerating mode we often use the product of G_{acc} $(R/Q)_{acc}$, as a "measure" of the power **P** dissipated in the metal wall at the given accelerating voltage V_{acc} and the given surface resistance R_s .

This is due to the geometry of cells; Moderate improvement possible by cavity shape

Longitudinal and Transverse Loss Factors (TD)

J.Sekutwitz's Slide

Ultra relativistic point charge **q** passes **empty cavity**

- a. Density of the inducted charge on the wall depends on the distance to the beam trajectory.
- b. The non uniform charge density on the metal wall causes the current flow on the surface.

Longitudinal and Transverse Loss Factors (TD), Continued

The amount of energy lost by charge q to the cavity is: J.Sekutwitz's Slide

 $\Delta U_q = k_{\parallel} \cdot q^2$ for monopole modes (max. on axis)

 $\Delta U_q = k_{\perp} \cdot q^2$ for non monopole modes (off axis)

where \mathbf{k}_{\parallel} and $\mathbf{k}_{\perp}(\mathbf{r})$ are loss factors for the monopole and transverse modes respectively.

The induced **E-H field (wake)** is a superposition of <u>cavity eigenmodes</u> (monopoles and others) having the $E_n(r,\varphi,z)$ field <u>along the trajectory</u>.

Both description methods FD and TD are equivalent.

For individual mode *n* and point-like charge:

$$k_{\parallel,n}^{\mathbf{p}} = \frac{\omega_n \cdot (R/Q)_n}{4}$$

Note please the linac convention of (R/Q) definition.

Similar for other loss factors......

RF parameters of the accelerating mode more practical

J.Sekutwitz's Slide

At stored energy W_{acc} the mean value of the accelerating gradient is:

Ratio shows sensitivity of the shape to he field electron emission phenomenon.

Ratio shows limit in E_{acc} due to the break-down of superconductivity (Nb ~180mT).

Cell to Cell Coupling K_{cc}

J.Sekutwitz's Slide

The last parameter, relevant for multi-cell accelerating structures, is the coupling \mathbf{k}_{cc} between cells for the accelerating mode passband (Fundamental Mode passband).

Single-cell is attractive from the RF-point of view:

- Easier to manage HOM damping
- ✤ No field flatness problem.
- Input coupler transfers less power
- ✤ Easy for cleaning and preparation
- But it is expensive to base even a small linear accelerator on the single cell. We do it only for very high beam current machines.

A multi-cell structure is less expensive and offers higher real-estate gradient but:

- Field flatness (stored energy) in cells becomes sensitive to frequency errors of individual cells
- Other problems arise: HOM trapping...
Cell to Cell Coupling K_{cc.} Continued

J.Sekutwitz's Slide

no E_r (in general transverse E field) no H_{φ} (in general transverse H field) component at the symmetry plane component at the symmetry plane

The normalized difference between these frequencies is a measure of the Pointing vector (energy flow via the coupling region)

$$k_{cc} = \frac{\omega_{\pi} - \omega_{0}}{\frac{\omega_{\pi} + \omega_{0}}{2}}$$

Field Flatness Factor a_{ff}

J.Sekutwitz's Slide

B₂

Field flatness factor for elliptical cavities with arbitrary ß=v/c

$$a_{\rm ff} = rac{N^2}{k_{\rm cc} \cdot m{B}}$$

This is an empirical correction, based on intuition.

Cells which geometric ß <1 are more sensitive to shape errors

Optimization of Cell Shape Against Multipacting

J.Sekutwitz's Slide

Before we will look for the correlation between the RF-parameter set and the Geometry of a cavity we need to look at the Multipacting phenomenon.

Multipacting \equiv a resonant bombardment of the metal wall (ceramics) synchronous with E-H fields, which may develop an avalanche of electrons "consuming" stored energy (cavities) or transmitted energy (waveguides, couplers) in RF devices.

How does this process go?

1-phase: electron is accelerated by the orthogonal to the wall electric field

2-phase: further acceleration and bending of its trajectory towards the wall

3-phase: electron bombs the wall and if impact energy is in a certain region more then 1 electron is emitted from the surface.

Phases 1, 2, 3 repeat which leads to the avalanche of electrons bombarding the wall and dissipation of the E-H energy.

Development of the avalanche is possible if :

- 1. Geometry + power level fulfills resonant condition.
- 2. Secondary electron emission coefficient is > 1.

Multipacting on Beam Pipe or Cell

J.Sekutwitz's Slide

Two-point multipacting

Secondary yield of clean Nb surface. Condense gases on the surface may increase secondary yield up to 3 !!!

Cell Shaped Suppressed Multipacting

The phenomena can be very often cured by processing which leads to change of the secondary yield below 1.

R. Parodi (1979) presented first **spherical** *C*-band cavity with much less multipacting barrier than other cavities at that time.

P. Kneisel (early 80's) proposed for the DESY experiment the elliptical shape of 1 GHz cavity preserving good performance of the spherical one and stiffer mechanically.

Optimization of Cell Shape

We begin with inner cells design because these cells "dominate" parameters of a multi-cell superconducting accelerating structure. **RF parameters summary:** J.Sekutwitz's Slide

$$FM : (R/Q), G, E_{peak}/E_{acc}, B_{peak}/E_{acc}, k_{cc}$$
$$HOM : k_{\perp}, k_{\parallel}.$$

There are 7 parameters we want to optimize for a inner cell Geometry :

There is some kind of conflict <u>7 parameters</u> and only <u>5 variables</u> to "tune"

General Trends of Cavity Optimization on RF Geometrical Parameters

J.Sekutwitz's Slide

Criteria	RF-parameter	Improves when	Cavity examples
Operation at high gradient	E_{peak} / E_{acc} B_{peak} / E_{acc}	r _i Iris, Equator shape	TESLA, HG CEBAF-12 GeV
Low cryogenic losses	(R/Q) G	r _i Equator shape	LL CEBAF-12 GeV LL- ILC cavity
High I _{beam} ↔ Low HOM impedance	k, k /	r _i	B-Factory RHIC cooling

We see here that r_i is a very "powerful variable" to trim the RF-parameters of a cavity.

Effect of Cavity Aperture

Why for a smaller aperture (r_i)

- (R/Q) is bigger
- E_{peak}/E_{acc} , B_{peak}/E_{acc} is lower?

 $E_{z}(z)$ for small and big iris radius

J.Sekutwitz's Slide

Effect of Cavity Aperture on RF Parameters

Effect of Cavity Aperture on B_{peak}/E_{acc}

In addition to the iris radius :

• B_{peak}/E_{acc} (and G) changes vs. Equator shape

J.Sekutwitz's Slide

Effect of Cavity Aperture on E_{peak}/E_{acc}

Both cells have the same: f, (R/Q), and iris radius

Prons and Cons of Aperture Effect

We know that a smaller aperture makes FM :

- (R/Q) higher
- B_{peak}/E_{acc} , E_{peak}/E_{acc} lower

but unfortunately a smaller aperture makes:

- HOMs impedances $(k_{\perp}, k_{\parallel})$ higher
- *cell-to-cell coupling* (*k*_{cc}) *weaker*

Aperture Effects on $\kappa_{//}$ and κ_{\perp})

 $(R/Q) = 152 \Omega$ $B_{peak} / E_{acc} = 3.5 mT/(MV/m)$ $E_{peak} / E_{acc} = 1.9$

 $(R/Q) = 86 \Omega$ $B_{peak} / E_{acc} = 4.6 mT/(MV/m)$ $E_{peak} / E_{acc} = 3.2$

Aperture Effect on Cell to Cell Coupling (K_{CC})

J.Sekutwitz's Slide

 $(R/Q) = 152 \Omega$ $B_{peak} / E_{acc} = 3.5 mT/(MV/m)$ $E_{peak} / E_{acc} = 1.9$

 $(R/Q) = 86 \Omega$ $B_{peak} / E_{acc} = 4.6 mT/(MV/m)$ $E_{peak} / E_{acc} = 3.2$

Choice of the RF Frequency

What about accelerating mode frequency of a superconducting cavity?

 $r/q=(R/Q)/l \sim f$

Frequency Dependence of SRF Surface Resistance

From the formula, we learned before:

$$\frac{P_{dissipated}}{V_{acc}^{2}} \equiv \frac{R_{s}}{G_{acc} \cdot (R/Q)_{acc}}$$
$$P_{dissipated} = \frac{R_{s} \cdot V_{acc}^{2}}{G_{acc} \cdot (r/q)_{acc} \cdot I_{active}}$$

J.Sekutwitz's Slide

one obtains:

A higher frequencies would be a good choice to minimize power dissipation in the metal wall when the length
$$I_{active}$$
 and the final energy V_{acc} are fixed.

Unfortunately this applies only to room temperature conductors, which $R_s \sim (f)^{1/2}$.

For superconductors like Nb:

$$R_{s}(f) = R_{res} + R_{BCS} = R_{res} + 0.0002 \cdot \frac{1}{T} \cdot (\frac{f[GHz]}{1.5})^{2} \cdot \exp(-\frac{17.67}{T})$$

and increase of R_s for higher f must be compensated with lower temperature T.

This is why ILC (1.3GHz) will operate at 2K, and HERA (0.5GHz) and LEP (0.352GHz) can (could) operate at 4.2 K

The inner cell geometry was optimize with respect to: low E_{peak}/E_{acc} and coupling k_{cc} .

At that time (1992) the field emission phenomenon and field flatness were of concern, no one was thinking about reaching the magnetic limit.

f_{π}	[MHz]	1300.0
r _{iris}	[mm]	35
k _{cc}	[%]	1.9
E_{peak}/E_{acc}	-	<i>1.98</i>
B_{peak}/E_{acc}	[mT/(MV/m)]	4.15
R/Q	[Ω]	113.8
G	[Ω]	271
<i>R/Q*G</i>	[<i>Ω</i> * <i>Ω</i>]	30840

Inner cell; Contour of E field

|--|

J.Sekutwitz's Slide

Evamplas o	f Innor col	le				5.5CRUEWIZ S BILL			
		13	new	II II New II				new	new
		CEBAF Original Cornell ß =1	CEBAF -12 High Gradient ß =1	CEBAF -12 Low Loss ß =1	TESLA ß =1	SNS B =0.61	SNS B =0.81	RIA ß=0.47	RHIC Cooler ß=1
f_o	[MHz]	1448.3	1468.9	1475.1	1278.0	792.8	792.8	793.0	683.0
f_{π}	[MHz]	1497.0	1497.0	1497.0	1300.0	805.0	805.0	805.0	703.7
k _{cc}	[%]	3.29	1.89	1.49	1.9	1.52	1.52	1.52	2.94
E_{peak}/E_{acc}	-	2.56	1.96	2.17	1.98	2.66	2.14	3.28	1.98
B_{peak}/E_{acc}	[mT/(MV/m)]	4.56	4.15	3.74	4.15	5.44	4.58	6.51	5.78
R/Q	[<i>Ω</i>]	96.5	112	128.8	113.8	49.2	83.8	28.5	80.2
G	[<i>Ω</i>]	273.8	266	280	271	176	226	136	225
<i>R/Q*G</i>	[<i>\$\Omega\$</i> * <i>\$\Omega</i>]	26421	29792	36064	30840	8659	18939	3876	18045
$k_{\perp}(\sigma_z=1mm)$	[V/pC/cm ²]	0.22	0.32	0.53	0.23	0.13	0.11	0.15	0.02
$k_{l}(\sigma_{z}=1mm)$	[V/pC]	1.36	1.53	1.71	1.46	1.25	1.27	1.19	0.85

3.5 High Gradient Cavity Shape

High Gradient Shapes

Cavity shape designs with low Hp/Eacc

TTF: TESLA shape Reentrant (RE): Cornell Univ. Low Loss(LL): JLAB/DESY Ichiro-Single(IS): KEK		TTF 1992	LL 2002/2	- F 2004 20	RE 102
		TESLA		RE	IS
	Diameter [mm]	70 60		66	61
	Ep/Eacc	2.0	2.36	2.21	2.02
	Hp/Eacc [Oe/MV/m]	42.6	36.1	37.6	35.6
	R/Q [W]	113.8	133.7	126.8	138
	G[W]	271	284	277	285
	Eacc max	41.1	48.5	46.5	49.2

from J.Sekutowicz lecture Note

Eacc vs. Year

2nd Breakthrough! 70 1st Breakthrough! RE, LL, IS shape 60 New Shape **High pressuer** water rinsing (HPR) 50 Eacc,max [MV/m] (·) **40 Electropolshing(EP)** 30 + HPR + 120^oC Bake 20 **Chemical Polishing** 10, '91 '93 '95 '97 '03 '05 '00 **'07** '99 Date [Year]

Comparison of DESY and KEK single results

Using DESY/ Detlef Reschke's data.

3.6 Criteria for Multi-cell Structures

Single-cell is attractive from the RF-point of view:

- Easier to manage HOM damping
- No field flatness problem.
- Input coupler transfers less power
- Easy for cleaning and preparation
- But it is expensive to base even a small linear accelerator on the single cell. We do it only for very high beam current machines.

A multi-cell structure is less expensive and offers higher real-estate gradient but:

- Field flatness (stored energy) in cells becomes sensitive to frequency errors of individual cells
- Other problems arise: HOM trapping...

How to decide the number of cells ?

J.Sekutwitz's Slide

RF Structure Simulation

Currently full 3D analysis is possible using cords Omega or ANALIS, example SLAC, KEK

Pros and Cons for Multi-cell Structure

J.Sekutwitz's Slide

Cost of accelerators is lower (less auxiliaries: LHe vessels,

tuners, fundamental power couplers, control electronics)

- Higher real-estate gradient (better fill factor)
- Field flatness vs. N
- HOM trapping vs. N
- Power capability of fundamental power couplers vs. N
- Chemical treatment and final preparation become more complicated
- The worst performing cell limits whole multi-cell structure

Solution for j-th cell in m-th mode

 π -mode

$$v = \frac{1}{\sqrt{N}} [1, -1, 1, -1, \cdots]$$
 General equation

$$\begin{bmatrix} 1+k+\gamma & -k & 0 & \cdots & 0 \\ -k & 1+2k & -k & \cdots & 0 \\ 0 & \ddots & & 0 \\ \vdots & -k & 1+2k & -k \\ 0 & \cdots & 0 & -k & 1+2k & -k \\ 0 & \cdots & 0 & -k & 1+2k & -k \\ 0 & \cdots & 0 & -k & 1+2k & -k \\ 0 & \cdots & 0 & -k & 1+3k \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_{N-1} \\ I_N \end{bmatrix} = \Omega^{(N)} \begin{bmatrix} 1 \\ -1 \\ \vdots \\ \vdots \\ I_{N-1} \\ I_N \end{bmatrix}$$

$$1 + 2k + \gamma = \Omega^{(N)}$$

-1-4k = -\Omega^{(N)} \rightarrow \gamma = 2k

$$v_{j}^{(m)} = B^{(m)} \sin \left[m\pi \left(\frac{2j-1}{2N} \right) \right], \quad B^{(m)} = \sqrt{\frac{2-\delta_{m,N}}{N}}$$
$$m = \text{m-th mode},$$
$$j = j\text{-th cell in mode m-th}$$

Field distribution in pass-bands

Phase Advance per 9-Cell Cavity in Pass-Band Modes of TM₀₁₀

124

Pass-Band Modes Frequency in 9-Cell Cavity

When N is infinite, $V_g=0$ @ π -mode. It means no energy flow between cells. At large N, beam acceleration becomes unstable because less energy flow between cells.

TM₀₁₀ Pass-Band Modes Frequency in 9-Cell Cavity

126

Field Flatness Sensitivity Factor vs. N J.Sekutwitz's Slide RF HOM Beam pipe has no acceleration beam. **BP** reduce the efficiency. N: number of cells Multi-cell is more efficient. **Field flatness factor :** $a_{ff} = \frac{N^2}{k_{cc}}$ f_{π} **Cell to cell coupling :** $k_{cc} = 2 \cdot \frac{f_{\pi} - f_0}{f_{\pi} + f_0}$ $\omega = f_{\pi/N}$ n_0 n_{π}

Effect of N on Field Flatness Sensitivity Factor

J.Sekutwitz's Slide

Field flatness vs. N

		ieni Loss		B =0.61	ß =0.81	B=0.47	
	N=5 $N=$	7 N=7	N=9	N=6	N=6	N=6	N=5
year 1	1982 200	2002	1992	2000	2000	2003	2003
	1 489 259	2 3288	4091	3883	2924	5040	850
					-		

Many years of experience with: heat treatment, chemical treatment, handling and assembly allows one to preserve tuning of cavities, even for those with bigger N and weaker k_{cc}

For the TESLA cavities: field flatness is better than 95 %

HOM Issue with Multi-Cell Structure

HOM couplers limit RF-performance of sc cavities when they are placed on cells no E-H fields at HOM couplers positions, which J.Sekutwitz's Slide are always placed at end beam tubes

The HOM trapping mechanism is similar to the FM field profile unflatness mechanism:

- → weak coupling HOM cell-to-cell, k_{cc,HOM}
- ✤ difference in HOM frequency of end-cell and inner-cell

f = 2385 MHz

f = 2415 MHz

HOM Modes in Single Cell Cavity

130

Smaller number of cells is easy to take out HOMs.

Capable Input Power Dependence on N

• Power capability of fundamental power couplers vs. N

J.Sekutwitz's Slide

When I_{beam} and E_{acc} are specified and a superconducting multi-cell structure does not operate in the energy recovery mode:

The Q_{ext} of the FPC, which usually is << than intrinsic Qo, is:

$$Q_{ext} \cong \frac{E_{acc} \cdot \beta \cdot \lambda \cdot N}{I_{beam} \cdot (R/Q)_{cell} \cdot N} = \underbrace{E_{acc} \cdot \beta \cdot \lambda}_{I_{beam} \cdot (R/Q)_{cell}} = \underbrace{\frac{\omega_{acc} \cdot W_{onecell} \cdot N}{1 \int E_{acc} \times H_{acc} ds}}_{S_{inputport}}$$
Independent of N
It must be ~ N to keep the ratio constant
132

Adjustment of End-Cells

J.Sekutwitz's Slide

The geometry of end-cells differs from the geometry of inner cells due to the attached beam tubes

Their function is multi-folded and their geometry must fulfill three requirements:

- ✤ field flatness and frequency of the accelerating mode
- field strength of the accelerating mode at FPC location enabling operation with matched Qext
- ✤ fields strength of dangerous HOMs ensuring their required damping by means of HOM couplers or/and beam line absorbers.

All three make design of the end-cells more difficult than inner cells.

The cavity was designed in 1992 (A. Mosnier, D. Proch and J.S.).

TTF 9-cells; Contour of E field

f _n	[MHz]	1300.00
f _{π-1}	[MHz]	1299.24
R/Q	[Ω]	1012
G	[Ω]	271
Active length	[mm]	1038

3.7 Example of SRF Cavities

J.Sekutwitz's Slide

Cavities operating with highest I_{beam} or E_{acc}

Type /No. of cavities			P _{beam} /cavity [kW]	P _{HOM} /cavity [kW]
KEK-B 0.5 GHz	Single- 8 with m I _{beam}	cell ax d	350	16
HERA 0.5 GHz	Multi-c with m I _{beam}	eell ax 180 bunches cw	60	0.13
TTF-I, 1.3 GHz	Multi-c 1 with m E _{acc}	eell E _{acc} = 35 MV/m ax 1.3ms/pulse 1Hz PRF	~100 Almost no beam loading	0

J.Sekutwitz's Slide

Cavities which will operate with high I_{beam} in the near future

Type /No. cavities				P _{beam} /cavity [kW]	P _{HOM} /cavity [kW]
SNS ß= 0.61, 0.805 GHz	x 33	Multi-cell with max I _{beam}	I _{beam} =38 (59) mA 1.3ms/pulse DF = 6 %	240 (366)	0.06 peak
SNS ß= 0.805 GHz	x 48			482	0.06 peak
TTF-II ep , 1.3 GHz	x 8	Multi-cell with max E _{acc}	E _{acc} = 35 MV/m 1.3ms/pulse 10Hz PRF	146	< 0.02>