

Demonstrator - Assembly

ECAL meeting - London

Mickael Frotin- 07/06/2009

Demonstrator design

- We have built a first small demonstrator to validate all composite process before the EUDET module
- Width is based on physic prototype (124 mm)
- Used for thermal studies and analysis : design of a thermal PCB and cooling system.
- First test of slab integration (gluing, interconnection ...)

Demonstrator – Alveolar structure

Assembled structure : Each alveolar layer ● are done independently, cut to the right length and angle (②) and bonded alternatively with W plates in a second curing step. The assembling is closed by 2 composite plates ③ of 15 mm and 2 mm thick (from LPSC)

Cutting tests

⇒ Global design : *OK*⇒ 3/3 "Alveolar layer" structure ● : *OK*⇒ Cutting test ② : *OK*⇒ Composite plates ③ (LPSC) : *OK*⇒ W plates (12) : *OK*

1 - Alveolar layers preparation

2 - Mould preparation

3 - Wrapping (W plates)

Assembly Steps (2/5) :

4 – Assembly in the mould (3 alveolar layers + 2 W layers)

Assembly Steps (3/5)

6 - Dismounting

6 - Dismounting

7 - Cleaning

Assembly Steps (5/5)

8 - Results

Dimensional inspection (1/3)

- We have controlled this first demonstrator with an automatic 3D control machine @LAL (thanks Julien Bonis)
- 264 Points of control
- Global dimensions : Thickness, Width
- 2 Flatness controlled (top and bottom)
- All cells and dead zones (thin walls) dimensions (each side)

Steps 1: Global dimensions

Expected (structure dim.) VS Measured

- Excellent wide precision (+/- 0.02)
- Smaller thickness due to the compacting of each glue layers

Global width : 382 mm vs 381,76 mm +/- 0.02

Total thickness (3 layers) : 48 mm vs 47,4 mm +/- 0.2

Steps 2 : Flatness

The Flatness: 120 points of control

Steps 3 : Cells and dead zones

Measure values (144 points of control)

Conclusion :

So, we 're ready

- We have realized a very important step :
 - Acquired knowledge in the Carbon cells structures building.
 - Validation of the mono-layer step and demonstrator assembly.
 - The global dimensions are correct to envisage the ILD assembly as planned.
 - The internal dimensions are respected.
 - No problem to insert the slab.
- The next step :
 - Integrate the thermal inerties for EUDET Module (15 layers).
 - Desing and Study the EUDET assembly mould END of 2009
 - Study the thermal inerties parameters (2 T = 700 kg (W) + 1000 Kg (mould)
 - Realize the insertions slab tests
 - Continue the mechanical tests on demonstrator (with bragg grating) until destroy ?

•	Demonstrator :		
	□ D€	emonstrator (3 layers) assembled	Feb 2009
•	Eude	et module :	
	• Co	omposite reception	Apr 2008
	□ "A	lveolar layer" mould reception	Apr 2008
	□ "A	ssembly mould" design (with thermal curir	ig studies) Oct 2009
	1	Alveolar layers	Jun 2009
	🗆 Eu	idet structure assembled	first half-year 2010