<u>Y. Renier</u> and P. Bambade (LAL) T. Naito (KEK) B. Bolzon (LAPP)

> ATF2 Project Meeting 8 June 2009

Introduction

Principle of stripline BPMs

Outline

Introduction

- Principle of stripline BPMs
- Relative measurements
 - Intensity dependence at the magnetic centre
 - Intensity dependence causes
 - Intensity dependence variation with position
 - Relative measurements
- Absolute measurementPosition after BBA
- Conclusion and prospects
 - Summary table
 - Conclusion

Introduction

Principle of stripline BPMs

Principle

Stripline BPMs description

- 4 longitudinal electrodes picking I_1 to I_4 .
- This signal passes through a diode and is amplified.

•
$$x = \alpha \times \frac{(l_1+l_3)-(l_2+l_4)}{l_1+l_2+l_3+l_4}$$
 signal.

•
$$y = \alpha \times \frac{(l_1+l_2)-(l_3+l_4)}{l_1+l_2+l_3+l_4}$$
 signal.

Relative measurements

Intensity dependence at the magnetic centre

Outline

Introduction

- Principle of stripline BPMs
- Relative measurements
 - Intensity dependence at the magnetic centre
 - Intensity dependence causes
 - Intensity dependence variation with position
 - Relative measurements
- Absolute measurementPosition after BBA
- Conclusion and prospects
 - Summary table
 - Conclusion

Relative measurements

Intensity dependence at the magnetic centre

Intensity dependence

description of the measurements

- BPM readings obtained at each stripline.
- Intensity was changed detuning the Klystron 8 phase.
- Plots show the BPM readings function of intensity, compared to the reading at 4.10⁹e⁻/bunch.

Effect of intensity dependence

• Non reproducibility of measurements if the intensity changes.

Relative measurements

Intensity dependence at the magnetic centre

Intensity dependence

description of the measurements

- BPM readings obtained at each stripline.
- Intensity was changed detuning the Klystron 8 phase.
- Plots show the BPM readings function of intensity, compared to the reading at 4.10⁹e⁻/bunch.

Effect of intensity dependence

• Non reproducibility of measurements if the intensity changes.

(日)

Intensity dependence at the magnetic centre

Intensity dependence

Intensity dependence at the magnetic centre

Intensity dependence

Intensity dependence causes

Outline

Introduction

• Principle of stripline BPMs

Relative measurements

- Intensity dependence at the magnetic centre
- Intensity dependence causes
- Intensity dependence variation with position
- Relative measurements
- Absolute measurement
 Position after BBA
- Conclusion and prospects
 - Summary table
 - Conclusion

Intensity dependence causes

Intensity dependence causes

Causes

There is intensity dependence because :

- Each BPM electrode is amplified.
- Amplifiers are not linear and each non-linearity is different.
- Find a small signal as the difference of high signals makes it very sensitive.

Each amplifier non-linearity is corrected by a calibration, but :

- The correction is not perfect (made with a pulser, not with the beam).
- The non-linearity may vary with temperature.

(日)

Relative measurements

Intensity dependence variation with position

Outline

Introduction

Principle of stripline BPMs

Relative measurements

- Intensity dependence at the magnetic centre
- Intensity dependence causes

Intensity dependence variation with position

- Relative measurements
- Absolute measurement
 Position after BBA
- Conclusion and prospects
 - Summary table
 - Conclusion

Relative measurements

Intensity dependence variation with position

Intensity dependence at MQF1X (X)

Relative measurements

Intensity dependence variation with position

Intensity dependence at MQF2X (X)

Relative measurements

Intensity dependence variation with position

Intensity dependence at MQF2X (Y)

Relative measurements

Intensity dependence variation with position

Intensity dependence at MQF3X (X)

Relative measurements

Intensity dependence variation with position

Intensity dependence at MQF3X (Y)

Relative measurements

Outline

Introduction

Principle of stripline BPMs

Relative measurements

- Intensity dependence at the magnetic centre
- Intensity dependence causes
- Intensity dependence variation with position
- Relative measurements
- Absolute measurement
 - Position after BBA
- Conclusion and prospects
 - Summary table
 - Conclusion

Relative measurements

Relative measurements

Principle of the measurement

- Different angles are introduced by ZH1X and ZV1X.
- Position variation at each striplines downstream is measured (average of 10 measurements).
- Compared with the simulation (dashed line).
- Plots show variation of position function of the angle introduced.
- Simulation is valid : works well with cavity BPMs on movers. (see tomorrow's talk on orbit correction)

Results

- Linearity is good for most of them.
- Factor between simulation and measurement depends on the corrector and changes with time and/or offset.

Relative measurements

ZH1X relative measurement

3

< □ > < @ > < @ >

Relative measurements

ZV1X relative measurement

Absolute measurement Position after BBA

Outline

Introduction

- Principle of stripline BPMs
- 2 Relative measurements
 - Intensity dependence at the magnetic centre
 - Intensity dependence causes
 - Intensity dependence variation with position
 - Relative measurements

Absolute measurement Position after BBA

- Conclusion and prospects
 Summary table
 Conclusion
 - Conclusion

Absolute measurement

Position after BBA

Position after BBA

Principle of the measurement

- Beam Based Alignment (BBA) was done weekly to find magnetic centre.
- Stripline BPMs are fixed to the magnet, it can be taken as a reference.
- BBA alignment procedure has a finite resolution.
- Compare the spread of the stripline readings after BBA to this resolution.

Absolute measurement

Position after BBA

Readings after BBA

æ

• • • • • • • • • • • •

Conclusion and prospects

Summary table

Outline

Introduction

- Principle of stripline BPMs
- 2 Relative measurements
 - Intensity dependence at the magnetic centre
 - Intensity dependence causes
 - Intensity dependence variation with position
 - Relative measurements
- Absolute measurement
 Position after BBA
- Conclusion and prospects
 Summary table
 - Conclusion

Conclusion and prospects

Summary table

Summary table

BPM name	type	X/Y resolution	X/Y resolution	remarks
		w/o correction	with correction	
MQF1X		100/50	45/35	
MQD2X	short,	40/15	30/10	
MQF3X	large	55/25	45/15	
MQF4X	aperture.	80/500	60/170	very bad
MQD5X		90/35	90/30	good in absolute
MQF6X	short,	20/20	20/15	
MQF7X	small	60/75	50/25	
MQD8X	aperture.	15/50	15/25	
MQF9X		150/80	35/20	strange
MQF13X	long,	35/30	35/30	no intensity depender
MQD14X	small	20/15	20/15	no intensity depender
MQF15X	aperture.	35/10	30/10	no intensity depender

Conclusion and prospects

Conclusion and prospects

Outline

Introduction

- Principle of stripline BPMs
- 2 Relative measurements
 - Intensity dependence at the magnetic centre
 - Intensity dependence causes
 - Intensity dependence variation with position
 - Relative measurements
- Absolute measurement
 Position after BBA
- Conclusion and prospects
 Summary table
 - Conclusion

Conclusion and prospects

Conclusion and prospects

Conclusion

Conclusion

- Striplines cannot be used to restore an orbit (most of the absolute readings are not constant).
- They can be used to make relative measurements (Dispersion or orbit stabilisation).
- In that case, the algorithm must be very robust to scale factor errors (0.5 to 3 observed).
- The needed automation to reproduce/preserve a very low emittance in EXT is prevented by their present status.

(日)

Conclusion and prospects

Conclusion and prospects

Prospects

- Is the electronics tunable in such a way that the above problems could be solved ?
- Otherwise is an upgrade necessary ?

