Commissioning plan for IP-BSM

09/06/10

Masahiro Oroku

T.Yamanaka, Y.Yamaguchi, Y.Kamiya, S.Komamiya(Univ. of Tokyo)
T. Okugi, N. Terunuma, T. Tauchi, S. Araki,
Y. Honda, T. Kume, J. Urakawa (KEK)

Outline

- Current status of IP-BSM
- Goals and what will be done during the next beam time series
- Tasks in summer shut down

Achievement from Feb to May

- Compton signal was detected
- Horizontal beam size measurement and Q-scan were done by laser wire mode
- Vertical scan and interference mode have not been succeeded so far

laserwire mode optics (horizontal measurement)

Compton signal

Goals of the next beam time series

- Beam size measurement by vertical and interference mode
- Measurement of under 100 nm beam (depend on the condition of the beam)

What will be done during the next beam time series

- Check the system
 - By measuring the compton signal using the laser wire mode
- After comfirming the system
 - Laser wire mode
 - Laser wire mode with beam expander(better resolution expected)
 - Understand systematic error sources by comparing
 W wire scanner / nife edge measurement / different beam size
 - Laser fringe mode
 - Observe the signal from the one laser
 - Build up the procedure to make fringe target
 - Move the fringes(phase scan) and measure the signal modulation
 - Compare beam parameters with those from C wire scanner and different crossing angle mode(when the beam is in stable or reproducible condition)

Tasks in Summer Shut Down

Horizontal measurement (laserwire mode)

insert the beam expander into the laser line and focus the laser light to smaller size (5 um is aimed)

Vertical measurement

install new screen monitor

Laser width measurement

install knife edge target

Background reduction

- prepare smaller aperture collimator to enhance S/N ratio
- perform collimator scan (instead of Polaroid)
- insert intermediate collimator
- replace the chamber in the final bending magnet

Gamma detector upgrade

add gain monitor system

Another laser

make transport line of the laser from EXT laserwire

Horizontal measurement

laserwire mode optics (horizontal measurement)

 Insert the beam expander into the laser line and focus the laser light to smaller size (5 um is aimed)

Vertical measurement

2-8 degree mode

174 degree mode

 Install the new screen monitors for collision of beam and laser for each setups(2-8, 30 degree mode and 174 degree mode)

Laser width measurement

- Install knife edge target to measure the laser size at IP
- Can be moved by stepping motor

Background reduction

Collimator

- prepare smaller aperture collimator to enhance S/N ratio
- perform collimator scan (instead of Polaroid)
- insert intermediate collimator

Chamber

 replace the chamber in the final bending magnet

Loss Monitor Signal

Detector upgrade

- Prepare the gain monitor
- ⇒ To certify the efficiency of light correction is not changed(important for "fit" method)

Another laser

- Make transport line of the laser from EXT laserwire
- Better laser profile
- Higher peak power ⇒bigger signal expected

EXT laserwire

Shintake

Conclusion

- We could certify the condition for compton scattering in the beam time from Feb. to May.
- Vertical scan and interference mode have not been succeeded so far.
- We will prepare and upgrade some devices(screen, detector...) and software.
- All optics mode(2-8 degree, 30 degree, and 174 degree) are going to be ready in autumn beam time.

Back up

New Screen monitor

Install new screen monitor for collision of beam and laser

From upstream

Laser width measurement

- Install knife edge target to measure the laser size at IP
- Can be moved by stepping motor

