

Physics with High Intense lasers at ATF2

T.Takahashi Hiroshima Univ.

June 10 2009 ATF2 meeting

T.Takahashi Hiroshima

Once ATF2 has accomplished its primary goal

- ATF2 provides highest quality GeV electron beam
- Techniques experiences of laser technologies with electron beam
 - optical cavity, alignment, etc.
 - new possibility
- In previous ATF/ATF2 meeting
 - $\gamma\gamma$ collider test beds (Gronberg, T.T)
 - physics with high intense laser field (Tajima, T.T)

.

• up date of laser physics • • •

T.Takahashi Hiroshima

• JFY 2008

IL

- Budget proposal to JSPS but not successful
- December 2008
 - started discussion to organize new working group
 - making attractive scenario(solid +exotic)
 - making reliable project plan
- March 2009
 - Visited UK to discuss possible plan
- JFY 2009
 - first local meeting at KEK April 22
 - Second meeting May 27
 - third one will be in July

Status of Intense laser technology

高強度レーザー技術の状況

近藤公伯 K.Kondo JAEA

(独)日本原子力研究開発機構 関西光科学研究所 量子ビーム応用研究部門 次世代レーザー開発研究グループ

平成21年4月22日(水)

Status of High power lasers

In Japan

- 100TW, 10Hzチタンサファイアレーザー
 K. Yamakawa, et al., Opt. Lett. (1998)
- シングルショット1PW、20fsチタンサファイア レーザー

M. Aoyama, et al., Opt. Lett. (2003)

ミシガン大 HERCULES レーザー 300TW /0.1Hz ~10²²W/cm²の集光強度

>10²²W/cm can be an assumption for study

Hawking /Unruh Radiation

Hawking radiation

Black Hole

Hawking Radiation for accelerated observer

http://photon.qm.adsm.hiroshima-u.ac.jp

Discussion is sill on going

- Unruh effect is
 - nothing more than QED if calculated in inertial frame
 - new phenomena as the event horizon play crucial role

- both view is correct,,,,,,, not just a QED phenomena important test of fundamental physics,

physics in acc. system

lab. test of Hawking effect

toward the experiment

- need calculation of realistic condition
 - previous calculation used some unclear assumption
 - not 3-dim calculation
 - acceleration in the laser is not constant or infinite time

Experiment for Unruh radiation

Schematic Diagram for Detecting Unruh Radiation

5-2000

. 12: A conceptual design of an experiment for detecting the Unruh effect.

T.Tauchi

Facilities at KEK

Nanometer electron beam at ATF2

1.3GeV energy 37nm vertical beam size at IP

Ultra-intense Laser beam in future $\lambda = 1$ um intensity >10²²W/cm²

Parameters of Unruh radiation with Backgrounds

Formulas by P.Chen and T.Tajima

P. Chen and T. Tajima, Phys. Rev. Lett. 83, 256 (1999)

	critical proper time	Larmor radiation	Unruh radiation	Unruh / Larmor	electron beam Unruh radiation only at ATF2					
	$\tau_{c}=2\pi c/A$ $=2\pi/a_{0}\omega_{0}$ $(\gamma=a_{0})$	(4π/3) r _e mc²a₀²ω₀/c	(12/π) r_hcao³ ωo²log(ao/π)/c²		E _e	٧.	kTγ.	Larmor radiation	Unruh Unruh rad/KT γ_{e}	
	8	eV	eV		GeV		eV	eV	eV	n"/e
New ATF2	5.51E-17	1.39E+02	5.48E-02	3.95E-04	1.3	2544	3.03.E+04	3.52E+05	1.39E+02	4.59E-03
4MeV	5.51E-17	4.30E-05	-6.91E-08	-1.61E-03	1.3	2544	3.03.E+04	1.09E-01	-1.76E-04	- 5.79E- 09
FFTB@SLAC	4.84E-15	9.49E-03	-3.12E-08	-3.29E-06	46.6	9.1.E+04	1.24.E+04	8.65E+02	-2.85E-03	- 2.30E- 07
a _o =1	1.74E-15	7.30E-02	-3.51E-07	-4.81E-06	46.6	9.1.E+04	3.44.E+04	6.66E+03	-3.20E-02	- 9.31E- 07

Quantum effect

٠

Compton scattering

	vacuum pol. Ƴ=2 y E/E _{œn}	vacuum pol. $\kappa =$ (2E, ^{nm} /mc ²)(E/E _{ctt}) =2h w/mc ²)($\lambda \sigma \lambda$)a ₀	90° collision $x=4E_{e}h\omega$ $\cos^{2}45^{\circ}/(mc^{2})^{2}$ $=2 r^{2}h\omega$	90° collision E _y ^{nax} = E _c *x/(x+1)	vacuum pol. κ = (2E, ^{max} /mc ²)(E/E _{ent}) =2h ω /mc ²)(λ , λ)a ₀	Headon x=4E,hw cos²0°/(nc²)²	Headon $E_{\gamma}^{max} =$ $E_{\alpha}^* x/(x+1)$ $= 4 \gamma^2 h \omega$	Synchrotron y : ω _c =2/3 · y ^s c/R R=3.887m
		for Comp. y	for Comp. y	MeV	for Comp. y	for Comp. y	MeV	eV
New ATF2	0.746	0.01	1.24E-02	1.59E+01	0.02	2.47E-02	3.13E+01	5.58E+02
4Me	V 0.746	0.75	3.98E+04	1.30E+03	0.75	7.97E+04	1.30E+03	5.58E+02
FFTB@SLA	0.305	0.14	8.40E-01	2.13E+04	0.19	1.68E+00	2.92E+04	2.57E+07
a₀=	1 0.846	0.39	8.40E-01	2.13E+04	0.53	1.68E+00	2.92E+04	2.57E+07

another aspect of intense field

Birefringence by QED and others

Euler-Heisenberug effective one loop action $\frac{1}{2} \frac{\alpha^2}{[4(F - F^{\mu\nu})^2 + 7(F - \widetilde{F}^{\mu\nu})^2]} = \frac{2}{2} \frac{\alpha^2}{\alpha^2} [(\vec{E}^2 - \vec{B}^2)^2 + 7(\vec{E} \cdot \vec{B})^2]$

$$\frac{1}{360} \frac{1}{m^4} \left[4(F_{\mu\nu}F^{\mu\nu})^2 + 7(F_{\mu\nu}F^{\mu\nu})^2 \right] = \frac{1}{45} \frac{1}{m^4} \left[(E^2 - B^2)^2 + 7(E \cdot B)^2 \right]$$

Refractive index depends on polarization relation

hort distance e-____0(10⁻⁴²b)

$$n_{\parallel} = 1 + \frac{16}{45} \frac{\alpha^2 U}{U_e}, \quad n_{\perp} = 1 + \frac{28}{45} \frac{\alpha^2 U}{U_e}$$

 $U_e = m_e^4 c^5 / \hbar^3 \approx 1.42 \times 10^6 \text{ J/} \mu \text{m}^3$

E. B. Aleksandrov, A. A. Ansel'm, and A. N. Moskalev, Sov. Phys. JETP 62, 680 (1985).

 $\Delta n_{QED} \sim \alpha^2/m^4 \epsilon = \epsilon \sim 1[J / \mu m^3] \rightarrow \Delta n \sim 10^{-11}$

.ong distance

If light scalar ϕ and/or pseudo scalar σ are hidden in vacuum, it may couple to photons

σ

$$\phi(F_{\mu\nu}F^{\mu\nu})^2 \quad \sigma(F_{\mu\nu}\widetilde{F}^{\mu\nu})^2$$

It would change the balance between 1st and 2nd term, that is, the polarization dependence deviates from QED.

2009/05/27@KEK

Kensuke Homma

If we could manage to realize wire shape in vacuum

How to extract small phase retardation ?

Fraunhoffer diffraction at an infinite distance can be obtained by lens at a short distance.

The diffraction pattern at the focal plane corresponds toFourier transformation of input shape of a refractive medium.2009/05/27@KEKKensuke Homma12

Experimental setup

Summary

- ATF2 beam + intense field
 - a unique place for intense field physics with
 - high quality GeV electron beam
 - laser technology
 - optical cavity with electron beam
- needs
 - making attractive and reliable physics scenario
 - experimental plan
- next meeting July (probably July 14)
 - electron interaction in intense field Bulanov JAEA
 - Status of theoretical calculation for Unruh effect
 - status and prospect for experiment
- test experiment TW laser + 40MeV e-

What can we discuss from macroscopic vacuum under a strong electromagnetic field?

K,Homma

Birefringence via $\gamma - \gamma$ scattering with photon probes:

- Higher order QED and possibly QCD
- Effect of hidden scalar field (Extra dimensional effect etc.)
- Effect of hidden pseudo scalar field (Axion type particles)

Physics of accelerating field with electron probes:

- Classical scattering such as Larmor scattering
- Unruh radiation (analogy to radiations from a black hole horizon)

Experimental test

Measure instantaneous variation of refractive index in Electro-Optical crystal by external electric fields.

Requirement to Laser

Intensity > 10²² W/cm² Wave length > $1 \mu m$ Standing wave with linear polarization at IF for larger a° , Unruh radiation $\propto (a^\circ)^3$ Lamor radiation $\propto (a^{\circ})^2$

Note : beam size at ATF2-IP, $\sigma_x=2.8\mu$ m, $\sigma_y=37$ nm