Intra-train FB systems at ATF2: FONT system and IP-FB system

Javier Resta Lopez for the FONT collaboration

8th ATF2 progress review meeting KEK, Japan, 8-11 June 2009

Introduction

ATF2: Final focus test beam line facility at KEK

- Provides a prototype of final focus system (Raimondi-Seryi's scheme) for future linear colliders, such as ILC and CLIC
- Currently under commissioning
- Major goals:
 - 1) Achievement of 30-40 nm beam sizes
 - 2) Stabilization of the small beams at the nanometer level
- In multi-bunch mode operation beam-based intra-train feedback (FB) systems will be essential to achieve the required beam stability (goal 2)

Introduction: Beam-based intra-train FB systems at ATF2

• ATF-ATF2 schematic layout

Intra-train FB system in the EXT line

- In the context of the Feedback On Nano-second Timescales (FONT) project, an intra-train feedback system has been designed and installed in the extraction line of ATF2. The main goals are:
 - The development and test of the necessary technology for the intra-train feedback systems of future linear colliders (Vital for high luminosity!).
 - Beam position stability control better than 1 µm rms at the ATF2 final focus entrance (for phase 2, end of 2010?).

Intra-train FB system in the EXT line: FONT

The FONT amplifier specified to allow FB tests using a long ILC-like train of 20-60 bunches !

FB loops for vertical position and angle correction

Flexible operation

FONT will allow different FB configurations:

One single digital FB board (with FPGA) for **simultaneous y and y' correction 9 ADC channel board**: to be tested during next run period (October/November 09)

Additionally, this system can be carried over to feed-forward

Layout of FONT at ATF2 **Extraction line** QUAD 10 **KICKERS** V kicker QD12X QF13X QD14X QF11X QD10X V BPM 8 K1 K2 Skew QUAD DIPOL CORR **BPM** beta [m] 6 P3 beta x beta y 4 2 QF15X 0 26.5 30 30.5 31 28 28.5 29.5 31.5 32 32.5 33 33.5 27 27.5 29 34 s [m] QUAD 10 $\Delta \mu_{\rm v} \approx \pi/2$ V kicker 9 QD12X V BPM QD10X QF11X 8 **K**1 K2 Skew QUAD DIPOL CORR mu [pi/2] 6 Ρī P3 mu_x P2 QD14X QF13X _ mu $\Delta \mu_{\rm v} \approx \pi/2$ $\Delta \mu_{\rm v} \approx \pi/$ 4 3 QF15X 2 26.5 30.5 31.5 27 27.5 28 28.5 29 29.5 30 31 32 32.5 33 33.5 34 s [m]

Optics characterisation of the FONT region

FONT Kicker and BPM

Latency budget

•	Time of flight kicker – BPM:	11ns
•	Signal return time BPM – kicker:	17ns
•	Irreducible latency:	28ns
•	BPM processor:	7ns
•	ADC/DAC (3.5 89 MHz cycles)	40ns
•	Signal processing (9 357 MHz cycles)	28ns
•	FPGA i/o	3ns
•	Amplifier	35ns
•	Kicker fill time	3ns
•	Electronics latency:	116ns
•	Total latency budget:	144ns

Simulations

- In order to study the accuracy of the orbit correction using the FONT elements, we have used the SVD algorithm implemented in the tracking code Placet-octave (<u>https://savannah.cern.ch/projects/placet</u>) for the correction of y and y' beam offsets.
- For the simulations we have considered $40\% \sigma_y$ beam position jitter at the entrance of the EXT line, and the following errors for the FONT instruments: 1 µm BPM resolution and 0.5% kicker field imperfection.
- We have also added 30 μm position jitter for all the ATF2 quadrupoles
- In a second step, **BBA** has been applied with 11 steering magnets and 50 BPMs along the lattice (EXT line + FFS) to minimise $\sqrt{(\sigma_x^* \sigma_y^*)}$ at the IP applying the Simplex algorithm
- After BBA, dynamic imperfections have been included: model K (A. Seryi's models) of ground motion
- Finally, **FB correction** is carried out

Simulation result example

Vertical position jitter propagation along the ATF2 EXT line and residual jitter distribution at the IP without and with correction by the FB system

FONT commissioning schedule

- February 09: FONT system was installed
- March-May 09: checking the FONT instruments in the beam line; FONT BPMs calibration; kicker tests (linear response range); new DAQ tested; several problems fixed
- Summer 09 shutdown:
 - FONT BPM movers installation (mechanical movers provided by IFIC-Valencia)
- October/November/December 09:
 - Test of new 9-channel digital board (improved BPM processors)
 - BPM calibration with movers
 - FB tests in multi-bunch mode: starting with 3 bunches
- Aim: System commissioned end 2009/beginning 2010

FONT commissioning issues

• FONT BPMs calibration with ballistic optics:

• Scans of the ZV6X corrector are giving consistent calibrations across the 3 BPMs [See talk by Ben Constance for calibration results] 14

FONT commissioning issues

- Pulse-to-pulse beam jitter and correlation between BPMs
- As intensity was increased, correlations appear in data

~ 0.1 x 10¹⁰ electrons/bunch

Resolution estimate ~ few microms [See talk by Ben Constance]

~ 0.3 x 10¹⁰ electrons/bunch

FONT commissioning issues

• FONT kicker calibration:

Possible intra-train FB system at IP

- To combat residual jitter at the IP
- Crucial for phase 2 goal (~nm beam stability level)

Key components:

Cavity IP-BPM (Y. Honda et al.) with nanometer level resolution: up-to-date resolution measurements ≈ 8.7 nm. Further improvement is necessary

Stripline kicker located upstream of the IP-BPM

Simulation procedure and results

- For the simulations we have used a **PI algorithm** implemented in the tracking code Placet-octave to correct beam position
- 2 nm IP-BPM resolution and introducing 0.5% kicker field imperfection
- Study of the FB system performance in terms of correcting beam position offset caused by ground motion (model K) and by vertical position jitter of the FD quadrupoles.

Summary

- Intra-train FB systems will be essential to achieve goal 2 of ATF2
- FONT R&D and commissioning in progress
- FONT instruments have been tested and calibrated during the March-May 09 campaign
- Next campaign: electronics upgrade, planning for 9-ADC channel FB board; mechanical upgrade with BPM movers; Tests of FB system in multi-bunch mode
- A combination of the FONT system in the EXT line and a possible IP FB system could be very effective to achieve beam stability at the nanometer level at the IP (simulations in progress)