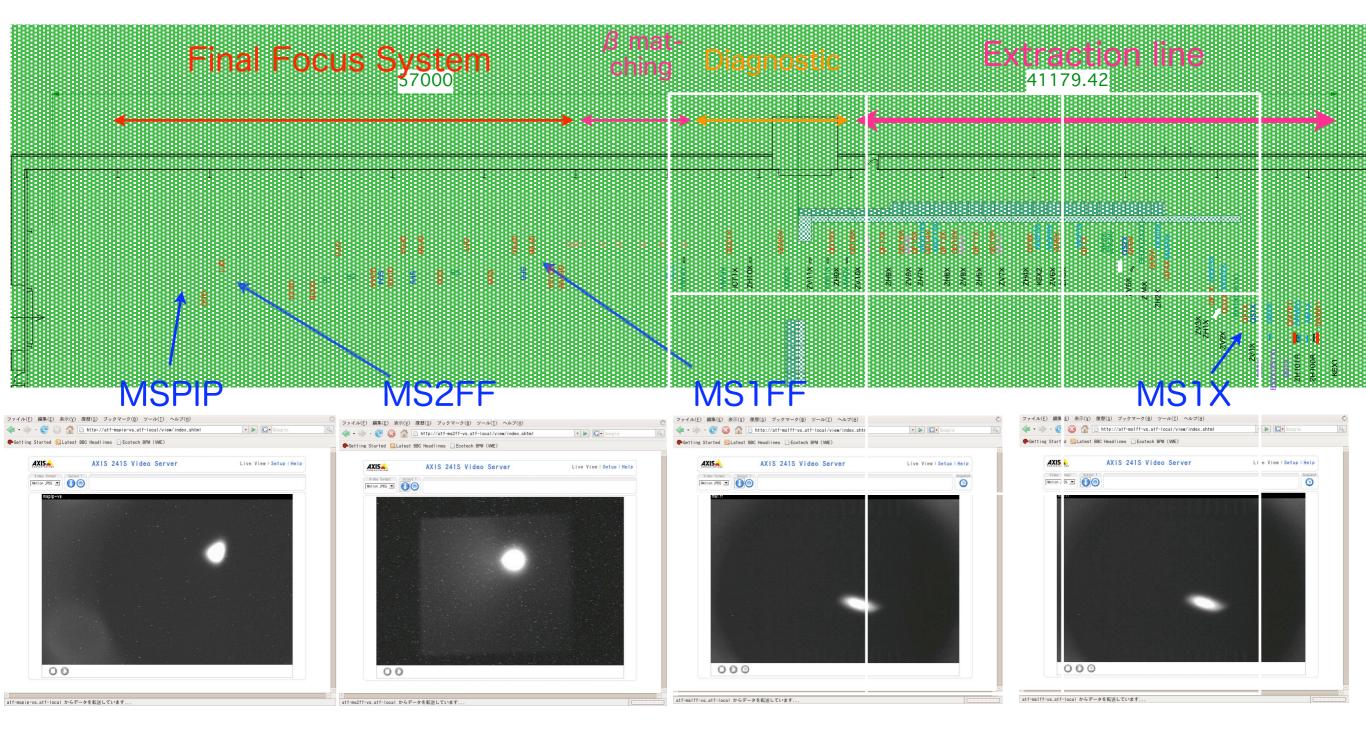

Goals at this meeting

Major issues to be presented and discussed; 1. Review commissioning status - hardware and software - background 2. Update the strategy and milestones - detailed plan in this summer 3. Long Term Plan in 2010 -T. Tauchi, 8th ATF2 Project Meeting, 8-11 June 2009

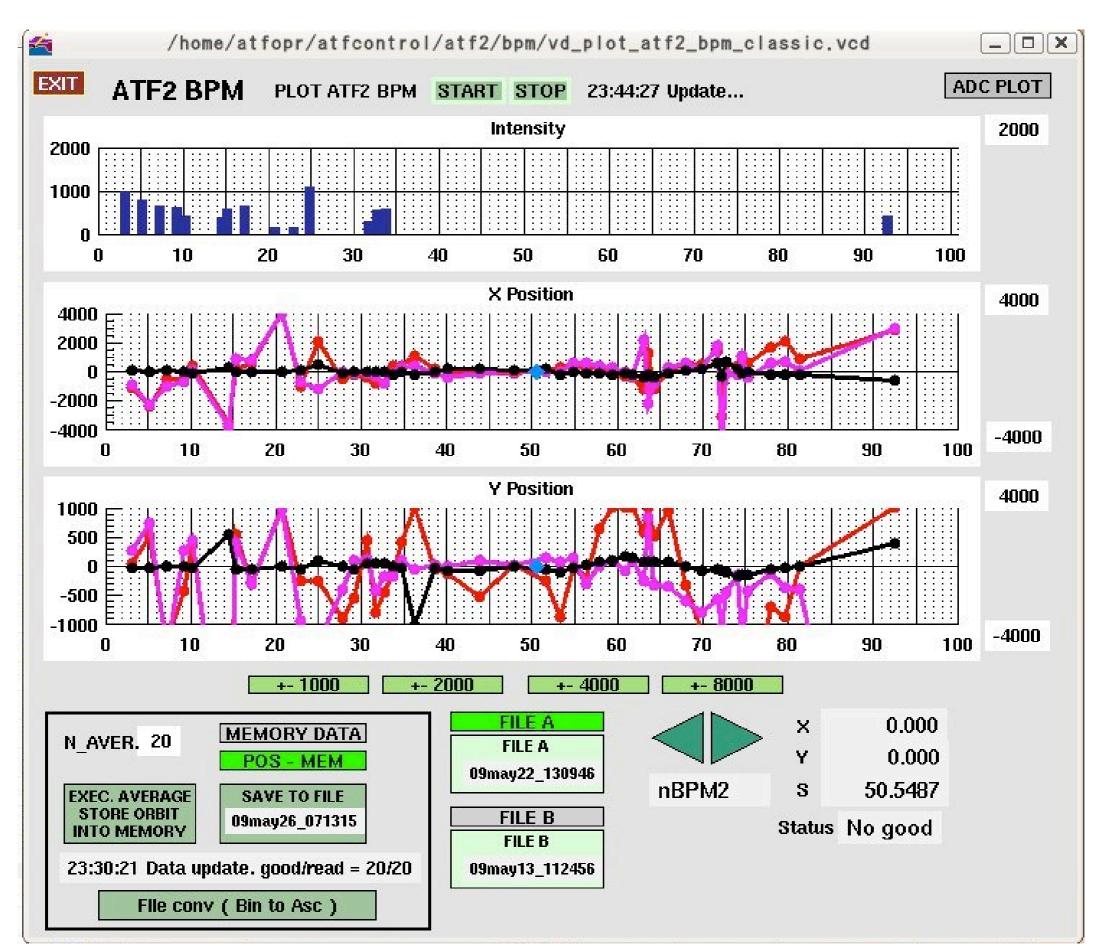
Hardware System at ATF2

22 Quadrupoles, 5 Sextupoles, 3 Bends in downstream of QM16 (IHEP, China) (SLAC) (SLAC, IHEP)

All Q- and S-magnets have cavity-type beam position monitors(QBPM, 100nm). (PAL,KNU, Korea, and SLAC, RHUL for electronics)



Shintake Monitor (beam size monitor, BSM with laser interferometer):Tokyo univ. MONALISA (nanometer alignment monitor with laser interferometer):Oxford univ. Laserwire (beam size monitor with laser beam for 1 µm beam size, 3 axies):RHUL IP intra-train feedback system with latency of less than 150ns (FONT):Oxford univ. Magnet movers for Beam Based Alignment (BBA):SLAC High Available Power Supply (HA-PS) system for magnets:SLAC


Component	Sub-component	Number	Comments	Status Presen		New	2007	plan in
	Quadrupole	pole 28 with QD0,QF1		production	27	1	1	0
-	Sextupole	5	4 with 50mm aperture and 2 with 32mm aperture	design	0	5	5	0
-	Octupole	0			0	0	0	0
Magnet	Bend		FF-bends =3	production	0	3		0
wiaghet	H. Steering	4	horizontal with 5A bipolar PS	1 added in v3.7	4	0	0	0
-	V. Steering	2	vertical with 5A bipolar PS		2	0	0	0
-	Skew Q	2	QK2X, QK3X	v3.7 optics	0	2	0	2
	Cable of ext.kicker	2	re-location of two kickers is alternative solution		0	2	0	2
	Movers	27	20Q-magnets, QD0,QF1 and 5 sextupoles	SLAC	27	0	0	0
Magnot Support	Base (Qs)	23	for each magnet except for the FD support	production	0	23	24	-1
Magnet Support	Bends	3	support system (3 bases and 3 interface plates)	design ?	0	3	3	0
	FD support	1	stable tables for QD0,QF1,SD0,SF1	CERN/LAPP	1	0	0	0
Power Supply	HA system	38	8(ExtQ), 6(MatQ), 5(Sext), 0(Oct), 16(FFQ), 3(B) ; 6 bipolar for QM11FF - QM16FF.	O(Oct), 16(FFQ), 3(B); production			38	0
-	Bipolar PS	2	bipolar and 20A for QK1X, QK2X	v3.7 optics		2	0	2
Vacuum	Beam pipe (m)	93.154	ATF extraction line at present and ATF2 beam line (50.613m)	production	0	93.154	46.577	46.58
	Q-BPM for Q & Sext.	33	QD10-12X,16-17X,QD18-21X, IHEP-Qs in FF	production	39	-6	0	-6
BPM	Q-BPM (s-band)	4	with larger diameter (40mm) ,final doublet system	design	0	4	0	4
DFM	stripline	14	for commissioning and at extraction line	production	14	0	0	0
	IP-BPM	3	2nm resolution for position jitter at IP (production/prototype	0	3	2	1
Wire scanner	Metal wire	5	exsit at the extraction line - relocation	existing	5	0	0	0
	Laserwire	5	upgrade of the metal wire scanners	R&D	0	5	0	1
	Shintake monitor	1	upgrade of the FFTB monitor, 532nm laser: 35-350nm	upgrade/ new design	1	0	0	0
IP - BSM	BSM-support	1	rigid and independent support	design	0	1	1	0
	Urakawa monitor	1	laser cavity type	R&D	0	1	0	0
Fast orbit	Feedforward	1	from DR to extraction line	R&D, design	0	1	1	0
correction	Feedback	1	intra-train fast feedback based on digital circuit	R&D	0	1	1	0
Pulse to pulse	V and H correctors	4	orbit correction at the extraction line	proposed	0	4	0	4
feedback	1um BPMs	4	orbit correction at the extraction line	proposed	0	4	0	4
	Screen monitor	4		KEK	4	0	0	0
Commissioning	Carbon wire scanner	1	beam size monitor at IP : up to 1um	SLAC	1	0	0	0
tools	Honda monitor	1	beam size monitor at IP : 350nm - 1um	proposed	0	1	0	1
	PLIC loss monitor	1	fiber with PMT readout	proposed	0	1	0	1
ICT	beam loss	2	beam current monitor		1	1	0	1
Beam dump	ATF2 Beam dump	1	design is the same as the ATF one		0	1	1	0

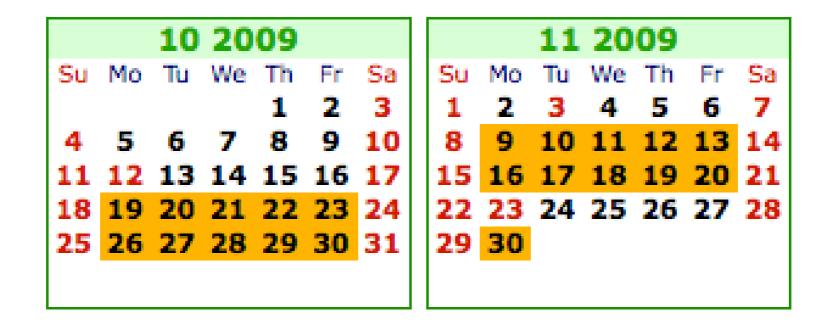
ATF2 Commissioning

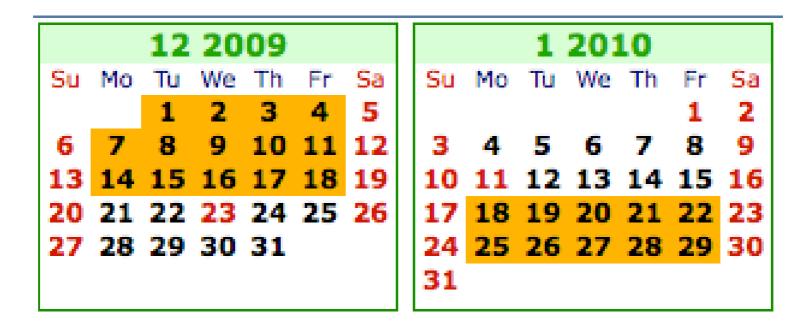
First commissioning by screen monitors and raw signals of BPMs

Almost all BPMs have been calibrated and provide positions.

Nominal parameter at ATF2

IP Parameter	Values	present			
Beam energy	1.3GeV	-			
Emittance in x	2 nm	done			
Emittance in y	12 pm	close			
Beta function in x	4 mm	8cm			
Beta function in y	0.1mm	lcm			
beam size in x	2.8 µm	not yet			
beam size in y	35 nm	not yet			


1. Beam stability at LINAC and DR - improvement of cooling water system i.e. precise temperature control - upgrade of DR-BPM electronics all in this October 2. Reliable diagnostic tools - calibrated and reproducible/stable devices i.e. BPMs, wire scanners, screen monitors, **OTRs and IP-BSM (Shintake monitor)** 3. Softwares : ATF operation and flight simulator - integration of sub-system controls/monitors


Hardware to be commissioned 1. Carbon wire scanner with 5μ m at the post IP note : 45 degree scanner with 10μ m tungsten wires have been fully commissioned - vertical scanner with three 5m carbon wires one horizontal and two +/-1.3 degree wires 2. OTR at the beginning of extraction line 3. Stripline BPMs with short and large aperture note : long and small aperture ones have been well calibrated. 4. S-band BPMs - to be confirmed at this meeting 5. Shintake monitor note : laser wire mode has been fully commissioned - Interference mode - IPBPM

"ATF2" site works in this summer

- 1. Monalisa
 - Vibration measurement at IP
- 2. Straightness monitor
 - installation
- 3. Laserwire
 - installation/commissioning the laser system
- 4. Shintake monitor
 - new screen, laser tuning (seed laser)
 - UK laser transport line
- 5. Alignment at ATF2 beam line
- 6. HLS system
 - a collaborator from SLAC

ATF beam operation schedule

50% for ATF2 as a general rule

_ ATF2 internal _	2009				2010													
	dec	jan	feb	mar	apr	may	oct	vor	dec	jan	feb	mar	apr	may		oct	vou	dec
BSM Laser Wire mode commissioned																		
First test of fast kicker																		
Observe several micron beam size																		
BSM 8° (0.25-1.5um) commissioned																		
Observe sub micron beam size																		
BSM 2° mode (1-6um) commissioned																		
Achieveεy=24pm beam in DR																		
BSM 30° (70-400nm) commissioned																		
Extract and preserve of Ey=24pm								×		3								
First observation of ILC-scaled $\sigma_{y=75nm}$								0										
Achievement of $\varepsilon_y < 12$ pm in DR												<						
Repeat observation of 75nm beam										6			V	$\boldsymbol{\succ}$				
Extract & preserve Ey=12pm beam											4	5		4	$\mathbf{\lambda}$			
BSM 174° (20-100nm) commissioned													0		1			
First observation of design 37nm beam													1	2)		K		
Fast kicker system fully commissioned															0			
Monalisa installed on beamline															4			
Reliable observation of 37nm beam																		
Achieve 2nm resolution of IP BPM																		
Evaluate IR position stability to nm level																		
Commissioning of Monalisa																		
Commissioning of FONT feedback																		
Observe of nm stability of IP position																		
Initial tests of squeezed -function																		

Session Organization

	8th June Monday	9th June Tuesday	10th June Wednesday	11th June Thursday
9:00		IPBSM	Beam size tuning	Summary of project meeting
		Optics modeling	Comm, Plan	
			Strategy and	Brief summaries
12:00		Beam dia. at EXT	Update plans	by conveners
13:30	Introduction	Align. & stability	Future plan	TB/SGC
	-start at 14:00			Proposals (4)
	Comm. status	Feedback system	Joint w. ILC-BDS	R&Ds
				closed session
16:00				Conclusion

16:30, ATF Daily operation meeting

18:30- RunEnd Party

Goals at this meeting

- 1. Update of "monthly" milestones by 2010
- with experiences so far and the goal of 37nm by end of 2010 **2. Detailed plan for sub-systems**
- establishment of beam tuning procedure with free run as well
 IPBSM (Shintake monitor) commissioning of interference mode
- Cabon-wire scanner and OTR
- Stripline BPMs, S-band BPMs : calibration
- IPBPM, tilt monitor, Monalisa, straightness monitor, LW and FONT etc.
- 3. Detailed schedule by end of December, 2009
- IP Beam size tuning with carbon wire scanner (100nm/step) : 1um
- IP Beam size tuning with Shintake monitor : 2-174 deg. mode < 100nm