







# Micron Size Laser-Wire System at the ATF-II Extraction Line (status report)

Alexander Aryshev <sup>c</sup>, Stewart Boogert <sup>a</sup>, Grahame Blair <sup>a</sup>, Gary Boorman <sup>a</sup> Lawrence Deacon <sup>a</sup>, Pavel Karataev <sup>a</sup> Nicolas Delerue <sup>b</sup>, Laura Corner <sup>b</sup>, Brian Foster <sup>b</sup> David Howell <sup>b</sup>, Myriam Newman <sup>b</sup>, Roman Walczak <sup>b</sup> Hitoshi Hayano <sup>c</sup>, Nobihiro Terunuma <sup>c</sup>, Junji Urakawa <sup>c</sup> Fred Ganaway <sup>d</sup>

 <sup>a</sup> John Adams Institute at Royal Holloway, Egham, Surrey, TW20 0EX, UK
<sup>b</sup> John Adams Institute at Oxford University, Nuclear and Astrophysics Laboratory, Keble Road, Oxford OX1 3RH, UK
<sup>c</sup> KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
<sup>d</sup> Now at Queen Mary, University of London, Physics department, Mile End Road, London, E1 4NS, UK

# Introduction

- ATF Laser-wire summary
- Review of EXT-LW ATF-2 upgrade
  - Hardware
    - Laser Transport Line
    - Alignment
    - OTR monitor
  - DAQ
- Recent results
  - LW electron beam optics test + Background study
  - OTR monitor test
- Upgrade status and plans

# ATF Laser-wire summary

- Prediction for  $W_{in}$ =8.5mm is  $W_0$ =2sigma=3 micron
- Measured minimum size

- 3.7 micron

- Laser properties
  - M<sup>2</sup>  $\sim 1.5$
- Astigmatism, 60 degrees
- So putting all together
  - 1.5 micron (lens) x 1.5 (M<sup>2</sup>)x 1.5 (Astigmatism) = 3.4 micron
- Roughly consistent, need work on the laser!

# Review of ATF-II upgrade

- Interaction chamber relocation
- Alignment laser installation
- Transverse beam size cross-check OTR monitor
- Detector relocation
- Laser Transport Line (LTL) simulation & design
- Laser diagnostics upgrade
- DAQ upgrade
- Laser relocation and upgrade: mode quality improvement aiming to archive 1 µm resolution.

General Aims:

- Robust laser diagnostics (+ major laser diagnostics out of the tunnel)
- Upgradeability:
  - Second scanning axis or changing of scanning angle
  - Second IP
- Automation

## ATF-II Laser-wire system



# High power Laser system



357MHz Mode locked seed laser pulse length 30ps, average power ~600 mW

Nd:YAG regenerative amplifier and linear amplifier: pulse duration 300 ps max pulse energy ~400 mJ

# ATF Interaction Point hardware



8th ATF2 Project Meeting

# ATF-II Laser transport line and Interaction Point hardware



# ATF-II Laser transport line





Left – first LTL optical table Top – Second LTL optical table + IP

09 June 2009

# IP chamber with two final steering mirrors and FF lens.



FF Mirror 2

8th ATF2 Project Meeting

# LTL and IP alignment

- Beam line alignment laser
  - OTR/timing screen
  - OTR path
- Laser line alignment laser
  - Primary laser path
  - Laser diagnostics path
  - FF optics
  - Post IP optics





# LW DAQ



- Easy to extend (in principle we can add any number of PC's).
- All data is synchronous.
- All ATF-II extraction line parameters and controls are accessible.

# Introduction

- ATF Laser-wire summary
- Review of EXT-LW ATF-2 upgrade
  - Hardware
    - Laser Transport Line
    - Alignment
    - OTR monitor
  - DAQ
- Recent results
  - LW electron beam optics test + Background study
  - OTR monitor test
- Upgrade status and plans

### LW electron beam optics test



- Predictions: at LW IP at MW2X
- $\sigma_x = 20 \mu m$ 20µm
- $\sigma_v = 1.7 \mu m$ 2.3µm
- Measurements at MW2X



magnets were used to tune the waist position

#### Interaction Chamber, OTR monitor test







09 June 2009

### Calibration of the optical system



# Optical Transition Radiation



#### Beam size effect



#### OTR image with NO filter and polarizer



20

# OTR image with a polarizer and optical filter





21

8th ATF2 Project Meeting

#### Beam Size effect



QD18X = 29.56A QD18X = 29.86A QD18X = 30.16A

SAD predictions  $\sigma_y = 1.7 \mu m$   $\sigma_y = 3.4 \mu m$  $\sigma_y = 7.2 \mu m$ 

# Current state of EXT-LW ATF-II upgrade and plans

#### Done:

- Detector relocation March 2009
- Interaction Chamber relocation April 2009
- LTL hardware installation March 2009
- LW optics test and background study – April 2009
- Beam line alignment laser installation – May 2009
- OTR monitor test April, May 2009

#### During ATF summer shutdown:

- Installation of the new optical table, laser relocation and commissioning
- Improvement of the laser diagnostics
- Laser transport line optics installation and alignment
- LW IP/post IP optics, including integration of the OTR monitor
- DAQ

General plan for autumn run (November – December 2009)

- LW optics and background study continue
- Laser diagnostics improvement continue
- Achieving of the stable electron beam transverse size measurements
- Further improvements towards automated scans

# Thank you

Work supported in part by the STFC LC-ABD Collaboration, the Royal Society, the Daiwa Foundation, and by the Commission of European Communities under the 6th Framework Programme Structuring the European Research Area, contract number RIDS-011899