Effect of skew quad corrections at post-IP wire-scanner

Benoît BOLZON (LAPP) Philip BAMBADE (LAL)

Benoît BOLZON

8th ATF2 project meeting, 10/06/09

Introduction

✓ Study of coupling and dispersion corrections with skew quadrupoles thanks to MAD optics code:

- At the post-IP wire-scanner (waist)
- With the current lattice

 With energy spread=0 at the entrance to DR extraction kicker (to take into account only x-y betatron coupling effects)
 Matricial calculation (not tracking)

✓ For dispersion corrections: use of skew quadrupoles QS1X and QS2X

For coupling corrections: use of skew quadrupoles QK1X to QK4X

✓ Complementary to simulations of Glen White who uses IP sextupoles for dispersion corrections

Dispersion correction with sum knob QS1X+QS2X

✓ QS1X/QS2X used for dispersion correction

Designed not to introduce coupling with sum knob (QS1X+QS2X)

	QS1	QS2	QS1+QS2	> Spatial dispersion (Dy):
Dy [m]	-0.005	-0.005	-0.010	→ increase of vertical nominal
σy _{ind} =Dy*dp/p [m] (dp/p=8e-4)	-4.0e-6	-4.0e-6	-8.0e-6 (17.2*σy)	 beam size of a factor 17 Angular dispersion (Dy):
Dy' [rad]	0.082	0.081	0.163	→ increase of angular vertical
σy' _{ind} =Dy'*dp/p [rad] (dp/p=8e-4)	6.6e-5	6.5e-5	1.3e-4 (5.1*σy')	Mostly spatial dispersion

✓ However, big coupling introduced and emittance increase of 50%

	QS1	QS2	QS1+QS2	QS1=QS2=0
<xy></xy>	-0.79	0.92	0.73	0.00
<xy'></xy'>	0.50	-0.63	-0.21	0.00
<x'y></x'y>	-0.43	0.24	-0.16	0.00
<x'y'></x'y'>	0.29	-0.18	0.11	0.00
εy [m]	2.88e-11	3.93e-11	1.80e-11	1.18e-11

Dispersion correction with sum knob QS1X+QS2X

✓ Currently, emittance measurements give 5pm

✓ For this value, QS1+QS2 increases the emittance by a factor 2 (9.7pm):

	QS1	QS2	QS1+QS2	QS1=QS2=0
<xy></xy>	-0.81	0.91	0.85	0.00
<xy'></xy'>	0.56	-0.56	0.04	0.00
<x'y></x'y>	-0.46	0.31	-0.05	0.00
<x'y'></x'y'>	0.33	-0.20	0.18	0.00
εy [m]	17.8e-12	24.6e-012	9.7e-12	5.0e-12

✓ N.B: For the nominal lattice, QS1+QS2 gives almost the same emittance than for the current one (17.3pm):

	QS1	QS2	QS1+QS2	QS1=QS2=0
<xy></xy>	-0.268595	0.114885	-0.170277	0.00
<xy'></xy'>	0.214471	-0.099922	0.147981	0.00
<x'y></x'y>	0.855622	-0.940809	-0.703025	0.00
<x'y'></x'y'>	-0.647924	0.705066	0.115216	0.00
εy [m]	28.9e-12	38.9e-12	17.3e-12	11.7e-12

Dispersion correction with sum knob QS1X+QS2X

- Coupling introduced by sum knob QS1+QS2 whereas they should not
 QS1 and QS2 at the good location compared to the design?
- ✓ QS2 could in principle be moved up to ~1m towards the IP
 → Effect of its position change on the emittance at post-IP WS

Almost no decrease of emittance with the change in position of QS2
 What is the position of QS1 and QS2 given by the design?

Dispersion correction with quasi sum knob QS1/2X

✓ Idea: Vary the strength of QS2 around the one of QS1 (fixed) to find the minimal emittance since sum knob increases the emittance

Minimal emittance of
 13.4pm with quasi sum knob
 QS1+70%QS2

Much better than with sum knob (18.0pm) and close to the nominal value (11.8pm)

Dispersions induced by the sum knob and the quasi sum-knob

	Dy [m]	σy _{ind} =Dy*dp/p [m] (dp/p=8e-4)	Dy' [rad]	σy' _{ind} =Dy'*dp/p [rad] (dp/p=8e-4)
QS1+QS2	-0.010	-8.0e-6 (17.2*σγ)	0.163	1.3e-4 (5.1*σy')
QS1+70%QS2	-0.008	6.4e-6 (13.7*оу)	0.138	1.1e-4 (4.3*σy')

Only slightly lower with knob QS1+70%QS2 than with knob QS1+QS2

Coupling correction with QK1-4X

✓ Correction of the coupling induced by sum knob QS1X+QS2X with QK1X, QK2X, QK3X and QK4X

Calculation of the QK1-4X knobs to get <xy>=-0.73, <xy'> =0.21,<x'y>=0.16, <x'y'>=-0.11:

< rv >	KLOK 1 X	Matrice M	QK1X	QK2X	QK3X	QK4X
< xy -	KLQK1X KLOK2X	<xy></xy>	0.683017	-0.324563	-0.366813	-0.587186
$\frac{xy}{x'y} = i$	M KLQK2X	<xy'></xy'>	-0.587207	-0.366819	0.324574	-0.683027
$\langle x \rangle \langle y \rangle$	KLQKJA VIOVAV	<x'y></x'y>	0.366830	0.587194	0.683026	-0.324577
< x y >		<x'y'></x'y'>	-0.324589	0.683036	-0.587215	-0.366836
_		Knob ob	tained by	matricial of	calculatior	
KLOK1X	< rv >		QK1X	QK2X	QK3X	QK4X
KLOK2X	< rv' >	Normalized	-1	0.3262	0.9749	0.5305
$\frac{KLQK2X}{KLQK3X} =$	$= M^{-1} \langle xy \rangle \langle xy \rangle \langle x' \rangle $	 Correlat 	ions obtai	ned (no su	ım knob):	very good
KLQK4X	< x ' y ' >		<xy></xy>	<xy'></xy'>	<x'y></x'y>	<x'y'></x'y'>
			-0.73	0.22	0.16	-0.14 7

Coupling correction with QK1-4X

✓ Results obtained with sum knob QS1X+QS2X and coupling corrections with QK1-4X

	No correction	correction
r13	0.73	-0.010
r14	-0.21	0.009
r23	-0.16	0.014
r24	0.11	-0.035
εγ	1.80e-011	1.18e-011
Dy	-0.010	-0.010
Dy'	0.163	0.163

Correlations completely corrected (almost 0)

Vertical emittance: from 18.0pm with no corrections to the nominal value with corrections (11.8pm)

8

Corrections of coupling and emittance induced by sum knob QS1X+QS2X with QK1-4X completely succeed!!

Coupling correction with QK1-4X

✓ Efficiency of the matricial method: calculation of knobs to independently correct <xy>, <xy'>, <x'y> and <x'y'> (value of 1)

Knob (Normalized)	QK1X	QK2X	QK3X	QK4X
<xy> (1st knob)</xy>	1	-0.4667	-0.5500	-0.8722
<xy'> (2nd knob)</xy'>	-0.8722	-0.5500	0.4667	-1
<x'y> (3rd knob)</x'y>	0.5500	0.8722	1	-0.4667
<x'y'> (4th knob)</x'y'>	-0.4667	1	-0.8722	-0.5500

Correlations obtained with the calculated knobs:

Correlations	1 st knob	2 nd knob	3 rd knob	4 th knob
<xy></xy>	0.83	-0.12	0.00	0.00
<xy'></xy'>	0.12	0.83	-0.00	0.00
<x'y></x'y>	0.00	-0.00	0.83	-0.12
<x'y'></x'y'>	0.00	-0.01	0.12	0.83

Knobs well orthogonal

Conclusion

Sum knob QS1X+QS2X: good spatial dispersions (lower angular dispersion) but coupling and emittance increase while they should not
 Was the design respected? (In simulations, move QS2 up to 60cm but almost no decrease of emittance)

✓ To correct coupling and emittance increase, 2 methods were tried:
 ➢ Quasi sum knob KLQS1+aKLQS2: minimal emittance of 13.4pm found for a=70% (nominal: 11.8pm)
 → Dispersion just slightly lower than with sum knob

QK1-4X correctors: down to nominal emittance/coupling almost 0

✓ With QK1-4X correctors: emittance completely corrected contrary to quasi sum knob method

- ✓ But with quasi sum knob: no use of QK1-4X
 - can then be used for other coupling corrections
 - avoid the combinaison of 6 correctors which is more sensitive to the correctness of the optics
 ¹⁰

✓ Check the corrector behavior (for quasi-sum knob, correctors of orthogonal coupling...) in the presence of:

- \succ Errors on β -functions at the injection
- Residual coupling not corrected in the damping ring

✓ Understand why sum knob QS1+QS2 introduces coupling and emittance increase while they were designed not to do that

Has the location of QS1 and QS2 been changed due to a problem of place? This can be checked by:

→ Doing the same simulations with the lattice of 2007 for ex. → Looking where the β -functions are exactly symmetric and of same amplitude (it will give the exact locations to cancel coupling)