Effect of skew quad corrections at post-IP wire-scanner

Benoît BOLZON (LAPP)
Philip BAMBADE (LAL)

Introduction

\checkmark Study of coupling and dispersion corrections with skew quadrupoles thanks to MAD optics code:
$>$ At the post-IP wire-scanner (waist)
> With the current lattice
> With energy spread=0 at the entrance to DR extraction kicker (to take into account only x - y betatron coupling effects)
> Matricial calculation (not tracking)
\checkmark For dispersion corrections: use of skew quadrupoles QS1X and QS2X
\checkmark For coupling corrections: use of skew quadrupoles QK1X to QK4X
\checkmark Complementary to simulations of Glen White who uses IP sextupoles for dispersion corrections

Dispersion correction with sum knob QS1X+QS2X

\checkmark QS1X/QS2X used for dispersion correction
\rightarrow Designed not to introduce coupling with sum knob (QS1X+QS2X)

	QS1	QS2	QS1+QS2	$>$ Spatial dispersion (Dy):
Dy [m]	-0.005	-0.005	-0.010	\dagger increase of vertical nominal
$\begin{aligned} & \sigma y_{\text {ind }}=D y^{*} d p / p[m] \\ & (\mathrm{dp} / \mathrm{p}=8 \mathrm{e}-4) \end{aligned}$	-4.0e-6	-4.0e-6	$\begin{aligned} & -8.0 \mathrm{e}-6 \\ & (17.2 * \sigma \mathrm{y}) \end{aligned}$	$>$ Angular dispersion (Dy):
Dy' [rad]	0.082	0.081	0.163	f angular
$\begin{aligned} & \sigma y^{\prime}{ }_{\text {ind }}=\mathrm{Dy}^{\prime} * \mathrm{dp} / \mathrm{p}[\mathrm{rad}] \\ & (\mathrm{dp} / \mathrm{p}=8 \mathrm{e}-4) \end{aligned}$	6.6e-5	$6.5 \mathrm{e}-5$	$\begin{aligned} & 1.3 \mathrm{e}-4 \\ & \left(5.1^{*} \sigma y^{\prime}\right) \end{aligned}$	Mostly spati

\checkmark However, big coupling introduced and emittance increase of 50\%

	QS1	QS2	QS1+QS2	QS1=QS2=0
$<x y>$	-0.79	0.92	$\mathbf{0 . 7 3}$	$\mathbf{0 . 0 0}$
$<x y^{\prime}>$	0.50	-0.63	$\mathbf{- 0 . 2 1}$	$\mathbf{0 . 0 0}$
$<x^{\prime} y>$	-0.43	0.24	$\mathbf{- 0 . 1 6}$	$\mathbf{0 . 0 0}$
$<x^{\prime} y^{\prime}>$	0.29	-0.18	$\mathbf{0 . 1 1}$	$\mathbf{0 . 0 0}$
$\varepsilon y[m]$	$2.88 \mathrm{e}-11$	$3.93 \mathrm{e}-11$	$\mathbf{1 . 8 0 e - 1 1}$	$\mathbf{1 . 1 8 e - 1 1}$

Dispersion correction with sum knob QS1X+QS2X

\checkmark Currently, emittance measurements give 5 pm

\checkmark For this value, QS1+QS2 increases the emittance by a factor 2 (9.7pm):

	QS1	QS2	QS1+QS2	QS1=QS2=0
$<x y>$	-0.81	0.91	$\mathbf{0 . 8 5}$	$\mathbf{0 . 0 0}$
$<x^{\prime}>$	0.56	-0.56	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 0}$
$<x^{\prime} y>$	-0.46	0.31	$\mathbf{- 0 . 0 5}$	$\mathbf{0 . 0 0}$
$<x^{\prime} y^{\prime}>$	0.33	-0.20	$\mathbf{0 . 1 8}$	$\mathbf{0 . 0 0}$
$\varepsilon y[m]$	$17.8 \mathrm{e}-12$	$24.6 \mathrm{e}-012$	$\mathbf{9 . 7 e - 1 2}$	$\mathbf{5 . 0 e - 1 2}$

\checkmark N.B: For the nominal lattice, QS1+QS2 gives almost the same emittance than for the current one (17.3pm):

	QS1	QS2	QS1+QS2	QS1 $=$ QS2 $=0$
<xy>	-0.268595	0.114885	-0.170277	$\mathbf{0 . 0 0}$
<xy'>	0.214471	-0.099922	$\mathbf{0 . 1 4 7 9 8 1}$	$\mathbf{0 . 0 0}$
<x'y>	0.855622	-0.940809	$-\mathbf{0 . 7 0 3 0 2 5}$	$\mathbf{0 . 0 0}$
<x'y'>	-0.647924	0.705066	$\mathbf{0 . 1 1 5 2 1 6}$	$\mathbf{0 . 0 0}$
हy [m]	$28.9 \mathrm{e}-12$	$38.9 \mathrm{e}-12$	$\mathbf{1 7 . 3 e - 1 2}$	$\mathbf{1 1 . 7 e - 1 2}$

Dispersion correction with sum knob QS1X+QS2X

\checkmark Coupling introduced by sum knob QS1+QS2 whereas they should not \Rightarrow QS1 and QS2 at the good location compared to the design?
\checkmark QS2 could in principle be moved up to $\sim 1 \mathrm{~m}$ towards the IP
\rightarrow Effect of its position change on the emittance at post-IP WS

> Almost no decrease of emittance with the change in position of QS2
\rightarrow What is the position of QS1 and QS2 given by the design?

Dispersion correction with quasi sum knob QS1/2X

\checkmark Idea: Vary the strength of QS2 around the one of QS1 (fixed) to find the minimal emittance since sum knob increases the emittance

$>$ Minimal emittance of
13.4 pm with quasi sum knob QS1+70\%QS2
> Much better than with sum knob (18.0pm) and close to the nominal value (11.8pm)
\checkmark Dispersions induced by the sum knob and the quasi sum-knob

	Dy [m]	$\begin{aligned} & \sigma y_{\text {ind }}=D y^{*} \mathrm{dp} / \mathrm{p}[\mathrm{~m}] \\ & (\mathrm{dpp} / \mathrm{p}=8 \mathrm{e}-4) \end{aligned}$	Dy' [rad]	$\begin{aligned} & \mathrm{oy}^{\prime}{ }^{\mathrm{nd}}=\mathrm{Dy} \mathrm{y}^{\prime *} \mathrm{dp} / \mathrm{p}[\mathrm{rad}] \\ & (\mathrm{dp} / \mathrm{p}=8 \mathrm{e}-4) \end{aligned}$
QS1+QS2	-0.010	-8.0e-6 (17.2*\%y)	0.163	1.3e-4 (5.1* ${ }^{\text {c }}{ }^{\prime}$)
QS1+70\%QS2	-0.008	6.4e-6 (13.7**y)	0.138	1.1e-4 (4.3* oy^{\prime})

> Only slightly lower with knob QS1+70\%QS2 than with knob QS1+QS2

Coupling correction with QK1-4X

\checkmark Correction of the coupling induced by sum knob QS1X+QS2X with QK1X, QK2X, QK3X and QK4X
$>$ Calculation of the QK1-4X knobs to get $\left\langle x y>=-0.73,\left\langle x y^{\prime}\right\rangle=0.21\right.$, $\left\langle x^{\prime} y\right\rangle=0.16,\left\langle x^{\prime} y^{\prime}\right\rangle=-0.11$:

Coupling correction with QK1-4X

\checkmark Results obtained with sum knob QS1X+QS2X and coupling corrections with QK1-4X

	No correction	correction
r13	0.73	-0.010
r14	-0.21	0.009
r23	-0.16	0.014
r24	0.11	-0.035
Ey	$1.80 \mathrm{e}-011$	$1.18 \mathrm{e}-011$
Dy	-0.010	-0.010
Dy $^{\prime}$	0.163	0.163

$>$ Correlations completely corrected (almost 0)
$>$ Vertical emittance: from 18.0pm with no corrections to the nominal value with corrections (11.8pm)
\Rightarrow Corrections of coupling and emittance induced by sum knob QS1X+QS2X with QK1-4X completely succeed!!

Coupling correction with QK1-4X

\checkmark Efficiency of the matricial method: calculation of knobs to independently correct $\langle x y\rangle,\left\langle x y^{\prime}\right\rangle,\left\langle x^{\prime} y\right\rangle$ and $\left\langle x^{\prime} y^{\prime}\right\rangle$ (value of 1)

Knob (Normalized)	QK1X	QK2X	QK3X	QK4X
$<x y>\left(1^{\text {st }}\right.$ knob)	1	-0.4667	-0.5500	-0.8722
$<x y^{\prime}>\left(2^{\text {nd }}\right.$ knob)	-0.8722	-0.5500	0.4667	-1
$<x^{\prime} y>\left(3^{\text {rd }}\right.$ knob)	0.5500	0.8722	1	-0.4667
$\left\langle x^{\prime} y^{\prime}\right\rangle\left(4^{\text {th }}\right.$ knob)	-0.4667	1	-0.8722	-0.5500

\checkmark Correlations obtained with the calculated knobs:

Correlations	$1^{\text {st }}$ knob	$2^{\text {nd }}$ knob	$3^{\text {rd }}$ knob	$4^{\text {th }}$ knob
<xy>	$\mathbf{0 . 8 3}$	-0.12	0.00	0.00
<xy'>	0.12	$\mathbf{0 . 8 3}$	-0.00	0.00
<x'y>	0.00	-0.00	$\mathbf{0 . 8 3}$	-0.12
<x'y'>	0.00	-0.01	0.12	$\mathbf{0 . 8 3}$

> Knobs well orthogonal

Conclusion

\checkmark Sum knob QS1X+QS2X: good spatial dispersions (lower angular dispersion) but coupling and emittance increase while they should not
$>$ Was the design respected? (In simulations, move QS2 up to 60 cm but almost no decrease of emittance)
\checkmark To correct coupling and emittance increase, 2 methods were tried: $>$ Quasi sum knob KLQS1+aKLQS2: minimal emittance of 13.4pm found for $a=70 \%$ (nominal: 11.8pm)
\Rightarrow Dispersion just slightly lower than with sum knob
> QK1-4X correctors: down to nominal emittance/coupling almost 0
\checkmark With QK1-4X correctors: emittance completely corrected contrary to quasi sum knob method \checkmark But with quasi sum knob: no use of QK1-4X
$>$ can then be used for other coupling corrections
$>$ avoid the combinaison of 6 correctors which is more sensitive to the correctness of the optics

Prospects and further studies

\checkmark Check the corrector behavior (for quasi-sum knob, correctors of orthogonal coupling...) in the presence of:
$>$ Errors on β-functions at the injection
$>$ Residual coupling not corrected in the damping ring
\checkmark Understand why sum knob QS1+QS2 introduces coupling and emittance increase while they were designed not to do that
$>$ Has the location of QS1 and QS2 been changed due to a problem of place? This can be checked by:
\Rightarrow Doing the same simulations with the lattice of 2007 for ex.
\Rightarrow Looking where the β-functions are exactly symmetric and of same amplitude (it will give the exact locations to cancel coupling)

