Permanent Final Quadrupole Magnet Test at ATF2

Kyoto Univ., KEK^A Y. Iwashita, M. Masuzawa^A, T. Tauchi^A

Contents

- Brief Review of Current Status
 Magnetic Field Measurement Result
 - Rotating Magnet Each Magnet
 - ➡Rotating Coil 5-Ring-Singlet
 - Mechanical Modification
- The Location?

Field Measurement Result

— based on the last year's —

Field Measurement: Rotating magnet instrument

Magnets are rotated to find their magnetic center against the outer shell.

Measurement on Each Magnet

Result of the Measurement

Disc	Dipole[G]	Quadrupole[10 ³ G]	Shift[µm]	Shift(calc.)[µm]
1st	12.4 ± 1.0	3.22 ± 0.05	38.5 ± 3.7	1.05
2nd	31.3 ± 0.1	3.25 ± 0.06	96.3 ± 2.1	0.789
3rd	11.3 ± 0.5	3.19 ± 0.06	35.4 ± 2.2	2.01
4th	110 ± 3	3.18 ± 0.06	346 ± 16	0.988
5th	15.6 ± 0.4	3.07 ± 0.22	50.8 ± 4.9	1.69

- Magnetic center offsets were more than ten times larger than calculations that include individual differences of magnet pieces.
- ➡ Assembly errors may be the main cause.
- The fourth disc has the further large offset; it may have a reason other than assembly errors.

By Rotation Coil

-48.3

6.851

mean

7.5

ATF2-09, 2009, June 10, KEK

1.15

Observations

- \bigcirc GL (100~20%) can be covered.
- Angle adjustment needed.
- Good reproducibility.
- But the value is big – needs adjustment.
- Minor mechanical modification improved the friction.

Mechanical Modification Ring Positioning Rollers

What to be Tested?

- Isn't just magnetic field measurement enough? — Only GL is measured by rotation coil. (If so, any beam test is waste of time.)
- What can be monitored?
 Profile (size) by wire scanner
 Position by BPM
 Size by Shintake Monitor
- Evaluation: x-y coupling, high order, stability, reproducibility, etc.
- Where the location should be? — Avoid interference with others.

ATF2-09, 2009, June 10, KEK

Summary

Mag. center movements, plane tilt showed good reproducibility but large.

 \rightarrow to be adjusted.

Mechanically improved for separate rotations.

Spare parts for mover is available.

BPM unit should fit in the bore:
– Vacuum flange has to be fitted lastly.

Appendix

Demagnetization by Radiation

Energy deposit

	GLD	SiD	SiD (by Takahashi)	neutron
BeamCAL	17mW	13mW	29mW	
QD0	94mW	97mW	147mW	10 ⁵ [n/cm ² s]
SD0	11mW	11mW	11mW	
QF1	16mW	18mW	15mW	
SF1	0.4mW	0.3mW	1mW	

very preliminary results by T.Abe (university of Tokyo), in private communication

Demagnetization by 14MeV neutron

Magnet	Demag. ratio [/1x10 ¹³ n/cm ²]	iHc [Oe]
47H	10.2%	
44H	1.8%	16
39SH	0.7%	21
32EH	0.3%	30

T. Kawakubo, et al., The 14th Symposium on Accelerator Science and Technology, Tsukuba, Japan, November 2003, pp. 208-210, in Japanese, http://conference.kek.jp/sast03it/WebPDF/1P027.pdf

Continuous 1mo.(2.6x10⁶s) operation may cause about 0.01[%] of (reversible?) demagnetization on NEOMAX 32EH. (1% for 10 years) ... needs more info.

Gluckstern's adjustable PMQ

Gluckstern's skewless variable PMQ

R.L. Gluckstern and R.F. Holsinger: Adjustable Strength REC Quadrupoles, IEEE Trans. Nucl. Sci., Vol. NS-30, NO. 4, August 1983, http://epaper.kek.jp/p83/PDF/PAC1983_3326.PDF

ATF2-09, 2009, June 10, KEK

Gluckstern's 5-ring PMQ Singlet(2): "Continuously Adjustable" PMQ fabricated

The 5-ring singlet PM-FFQ

Disc(20mm)

