Gradient Yield

Rongli Geng Jefferson Lab

ILC AD&I at DESY, May 28-29, 2009

Gradient Limiting Factors – 1/4

Field emission

- Much reduction is seen by alcohol rinsing and ultrasonic cleaning w/ detergent (USC)
- Still present sometimes
 - o FE means reduction in Q0 (increase in cryogenic load) and/or dark current
 - Acceptable FE loading for ILC yet to be defined (DESY has example for XFEL cavities)
 - Measure should be developed for FE monitoring during cavity vertical test, that can be translated to dark current
 - o Understanding expected to continue and further reduction seems possible. Recent example at JLab: first 9-cell test of a 9-cell cavity up to 40 MV/m without X-ray.
- Re-cleaning (USC+HPR) is available as a counter-measure
 - o Effectiveness found in all cases studied at JLab
 - o DESY seems to have similar experience
 - Need to track and quantify effectiveness
- FE performance in cavity string
 - o This is what matters in the end
 - Need to establish relationship with respect to FE vertical test performance

Gradient Limiting Factors – 2/4

Q-drop

- Reliable counter measure well established
 - o For the so called "high-field Q-slope"
 - o Baseline procedure 120C X 48 hours "in-situ" bake
 - (despite lacking understanding of why it works)
 - Useful R&D (for example "fast baking") seems to have discontinued

Another class of Q-drop

- o Observed in multiple cases
- Caused by "abnormal" EP conditions (excessive water or too much acid flow)
- o This should be preventable by EP process parameter control
- It is also shown this class of Q-drop is treatable by re-EP

Long term stability

- Q-drop seems not to be re-introduced by storage or re-assembly
- o This means vertical test qualification is all one needs

Gradient Limiting Factors – 3/4

Q-disease

- Reliable counter measure well established
 - Vacuum furnace treatment after bulk EP
 - This removes hydrogen from niobium
 - May also entail some (beneficial) metallurgical effect

Process variability

- o There are three variants (600-800CX10-2 hours)
- o Measurements should be done to find the correct optimal (may be dependent on the starting niobium material) for hydrogen removal as well as metallurgical properties
- Some material properties may be of interest for pressure code conformity?

Gradient Limiting Factors — 4/4 • Quench

Many recent cases have to do with defect near equator

- Responsible for "yield drop" near 20 MV/m
- Quench/defect correlation made by T-mapping and optical inspection
- Usually strong pre-cursor heating
- o Re-EP seems to have little effect
- Most likely cause is material/fab
- Intensive studies underway (particularly for new vendor cavities)
- o Understanding and solution likely to benefit any future SRF project

Another class of quench

- Happens ~ 30 MV/m level; not very often but observable
- No observable feature at quench location
- May not have pre-cursor heating
- Re-EP raises limiting gradient (in one case at JLab)

Counter measures

- Should be developed for treating cavities failling first-pass qualification (more later)
- One example (tumbling) already shown at Cornell
- Other methods (local grinding, local e-beam re-melting) being explored
- o In the mean time, feed back to cavity vendor for defect prevention by QA/QC

Gradient Yield

Processing yield vs. production yield

Lessons learned

- Yield can be pessimistically lowered by repeated EP processing of candidate cavity (example next slide)
- o For various reasons: physical defect from mat/fab not effectively removed by EP; facility failure/human error (process complexity & many critical steps)

What counts is production yield

- o Particularly the first-pass production yield
- o It has been shown cavities from some vendor have (significant) advantage
- The first-pass production yield of cavities from "qualified" vendor should serve the purpose of the "best possible" yield
- A small (cavities processed at JLab & DESY) data set is now available; more statistics expected in view of new cavity orders (for example FNAL's order of >=12 cavities)

Second-pass production yield

- o Given the cost for cavity construction, first-pass result is a decision point
- o Re-work or reject?
- o Re-working may take different path (data driven): re-HPR; re-EP, repair & re-process
- o In the current R&D phase, we may need to develop a re-work strategy

Recently Reported Gradient Yield

A Proposed Method for Gradient Yield

First-pass result decides path forward:

- Move on for S1 if spec met
- Re-process (Re-HPR; Re-EP; Local repair) if spec not met

Sample data from JLab

Summary

- Gradient limiting factors categorized
- Sate of understanding on limiting factors presented
- Variability in reported yield curve analyzed
- Future yield analysis requires updated definition example is given
- Statistics expected to improve
- > 60 cavities to be ordered in next 2 years
- New players (such as new company in North America and new labs/university groups in China and India) are joining the cavity work
- Collaboration & knowledge transfer necessary for yield improvement
- The robustness of yield curve depends on robustness of the material,
 the fabrication and processing tools

A Global Data Base for Yield Tracking & Analysis

			natio	n										RF Result		Database Information					
		9-cell	TESLA (EU and US)	Fine - grai n	Wah Cha ng	EP	JLab#1	None								Quen ch				yes	
		1-cell	TESLA (KEK)	Larg e- grai n	Toky o Den kai		KEK#1	600- 800								Field emiss ion				no	
		other (please specify in remark)	ᄔ		Hera eus		HPR only	1400 with getter				U	nd	er	de	vel	opment, more fr	om Camille G	insburg	, FN	AL
			Ichiro	,			none									FE/qu ench					
			other (please specify in remark)													other (please e specify in comment)					
Cavity Name	Aliase s	Type of cavity	Cell shape	Mat erial	Mat erial ven dor	Bulk surf ace rem oval	Final surface treatme	High temp eratu re heat treat ment	Cavity Remarks	RF test locati on	RF test date	RF test#	Gradi ent [MV/ m]	Q0 [10^1 0]	Field emis sion Onse t field [MV/ m]		RF Result Comment	Additional information known about cavity limitation and source of understanding	Cavity Plan	test be included	if no, please explain
AES00	AES1, TB9A ES001		US)	Fine - grai n	Wah Cha ng	i EP	JLab#1	600- 800	600C HT; material removal 213 um	JLAB	3/6/20 07	,	17.5	5	none	Quen ch	mode measurements: quench on cell 3 or 7			yes yes	
AES00	AES1, TB9A ES001	9-cell	(EU and US)	Fine - grai n	Wah Cha ng		JLab#1	None	material removal 236 um	JLAB	3/28/2 007				none	ch	mode measurements: quench on cell 3 or 7			yes 1()	

R.L. Geng

ILC AD&I, DESY, may 28-29, 2009