

S. Guiducci (LNF)

AD&I meeting May 28-29, 2009

5/29/09 AD&I, DESY

İİĹ

Global Design Effort

Damping Ring Questions

1. How many bunches?

Number of bunches and Circumference

	RDR 2007	TDP	SB2009	
		TILC08		
# of bunches	2684-5412	2610-5265		
Bunch population	2-1 · 10 ¹⁰	2-1 · 10 ¹⁰		
Bunch distance (ns)	6.2-3.1	6.2-3.1		
C (m)	6695	6476		
h	14516	14042		
Kicker frep MHz (1ms linac pulse)	2.8-5.5	2.7-5.4		

Which bunch distance?

e+ Injection kickers

	RDR					
Bunch dist (ns)	3	6				
Stripline length (cm)	30	60				
Stripline voltage (KV)	± 5	± 5				
# of e+ injection striplines	20	10				
Kicker frep MHz (1ms linac beam pulse)	5.5	2.8				

ΪĹ

Pulse source(FID FPG 10-6000KN)

Specification

Maximum output voltage + 10 kV

- 10 kV

5

T. Naito, TILC09

Rise time @ 10-90% level - < 1 ns Rise time @ 5-95% level - < 1,2 ns Pulse duration @ 90% - 0,2-0,3 ns Pulse duration @ 50% - 1,5-2 ns Output pulse amplitude stability - 0,5-0,7% Maximum PRF in burst - 6,5 MHz Number of pulses in burst - up to 110 PRF of bursts - up to 5 Hz

Beam kick profile from the beam oscillation amplitude

bal Design Effort

Bunch distance and e-cloud

OCS 6 ns 2xOCS 12 ns 2 10¹⁰ part./bunch

Figure 3.94: Electron cloud densities in the reference lattices and the B-Factories, compared with the estimated instability thresholds.

Increasing the bunch spacing (OCS and 2xOCS) strongly reduces the ecloud density (Configuration recommendation Feb. 2006)

At present a 3.1ns bunch distance seems feasible with proper choice of mitigation techniques

Number of bunches and Circumference

	RDR 2007	TDP	SB2009	?
		TILC08		
# of bunches	2684-5412	2610-5265	1305-2632	1300
Bunch population	2-1 · 10 ¹⁰	2-1 · 10 ¹⁰	2-1 · 10 ¹⁰	2 · 10 ¹⁰
Bunch distance (ns)	6.2-3.1	6.2-3.1	6.2-3.1	3.1
C (m)	6695	6476	3238	1600
h	14516	14042	7021	3500
Kicker frep MHz (1ms linac pulse)	2.8-5.5	2.7-5.4	1.4-2.7	1.4

Number of bunches and Circumference

- For 1300 bunches one could design a very short ring, as the SuperB one (~1600 m) without wigglers
- Wigglers give the main contribution the ecloud density
- Cost would be reduced by ~1/4

Arcs based on SuperB-like cells

Same straight sections as the 6 km ring

Cost estimate for TDP-2: straight sections scale directly from the 6 km ring, for the arcs use information from the SuperB TDR

5/29/09 AD&I, DESY

M. Biagini

Curly H

Original, 6Km

NIH

Features

- Arcs contain alternating cells with different phase advances:
 - cell #1: L=20 m, $\mu_x = 0.72$, $\mu_y = 0.27$
 - cell #2: L=21 m, $\mu_x = 0.5$, $\mu_y = 0.2$
- Emittance can be tuned by changing the x-phase advance/cell in cell#1
- Same is true for momentum compaction

Lattice Design at CI (6 km)

(apply also to 3 km)

Modifications have been made to the straight sections according to the requirements for the central injector integration scheme proposed for the "Minimum Machine":

Injection and extraction are now in a single straight in each ring

Beams circulate in opposite directions in the two rings

5/29/09 AD&I, DESY

İİL

A. Wolski, ILC DR Webex, 4 March 09

Assuming:

- Same bunch distance
- Same charge/bunch
- Same damping time

same current

What changes with the number of bunches

	EDR	SB2009	
	DCO	DSB	
Energy (GeV)	5	5	
Circumference (m)	6476	3238	Half circumference
Bunch number	2610 - 5265	2610 - 1305	
N particles/bunch	2x10e10	2x10e10	
Damping time tx (ms)	21	21	
Emittance ex (nm)	0.48	0.37	
Emittance ey (pm)	2.0	2.0	
Momentum compaction	1.7x10-4	1.8x10-4	
Energy loss/turn (MeV)	10.3	5.3	
Energy spread	0.0013	0.0013	
Bunch length (mm)	6	6	
RF Voltage (MV)	21	11	Half RF cavities
RF frequency (MHz)	650	650	
B wiggler (T)	1,6	1,6	
Lwig total	215,6	107,8	
Number of wigglers	88	44	mair wiggiers

Magnet counts

	DSB (3km)	DCO (6km)
Arc dipole length	5.4 m	2.0 m
Arc dipole field (2 types)	0.178/0.243 T	0.273 T
Number of arc dipoles	128	192
Number of 2 m dipoles	4	8
Number of 1 m dipoles (in chicanes)	36	48
Total number of quadrupoles	502	690
Maximum quadrupole gradient	7.5 T/m	12.0 T/m
Total number of sextupoles	192	384
Maximum sextupole gradient	145 T/m ²	215 T/m ²

Number of magnets reduced by 0.5÷0.7

Half cable lenght

- Lattice and DA
 - Different lattices can fulfill the requirements in both cases
- LET
 - Reevaluate for the different lattice
 - We expect ~ half bpms and correctors
- Space charge incoherent tune shift

$$\Delta Q_{y} \approx \frac{r_{e}NC}{\left(2\pi\right)^{3/2} \sqrt{\gamma \varepsilon_{x} \gamma \varepsilon_{y}} \sigma_{z} \gamma^{2}} \qquad \sim \text{half}$$

- E-cloud and other instabilities
 - Depend on bunch distance, peak and average current ~ same results
- Fast ion
 - Shorter gaps between trains
 - Reconsider the fill patterns

What changes with the number of bunches

CFS:

İİİ.

- Half tunnel length
- Half space for RF and wigglers
- Same number of shafts (1 for RF and wigglers, 1 for injection/extraction)

Concern		RISK	COST	r*C	MITIGATION	INISK
(1) Secondary Emission Yield too		• • •	• •		Return to two e+ ring design after	analys
high. >1.2	Q	High	200	100	extensive R&D programs	
(2) Vacuum system design not robust		Med	20	5	Redesign vacumm system with more distributed pumping	
(3) High impedance of vacuum chamber components		Med	10	3	More engineering design or DR re optimization	
(4) RF Margin	a	Med	50	13	Increase klystron/cavity system	
(5) Combination of concerns with RF and Wiggler layouts	Q	Med	100	25	Increase in number of shafts and alcoves	
(6) Plan for having room for future double ring, later decision	Q	Low	20	2	Increase tunnel diameter and include above (5)	
(7) General concern with injection/extraction kicker		D.d. e.d.			Increase no of kicker units and/or	

Ī

Concern COMMENTS/NOTES		UPDATES	
		Mitigation Techniques can lower e-cloud	
	Assumes CF&S designs have been	density below instability threshold. Effect of	
(1) Secondary Emission Yield too	changed to allow this possibilty. Ref JMP	MT on vacuum system design, cost and	
high. >1.2	3/27/07	impedance not yet evaluated, see 2,3.	Very low
		Present vacuum system design includes	
	Early decision is less expensive and less	antechamber in dipoles (1) and more	
(2) Vacuum system design not	impact on other systems Ref JMP	pumping speed. Cost will be available in few	
robust	3/27/07	weeks.	High
		recent estimates indicate that nominal	
(3) High impedance of vacuum	Could be input to review of design	parameters are below the thresholds for	
chamber components	parameter range Ref JMP 3/27/07	microwave and other instabilities	Very low
	Coupled with items,5,6, has large impact	Not needed since momentum compaction	
(4) RF Margin	on CF&S Ref JMP 3/27/07	has been reduced	Very low
(5) Combination of concerns with RF	CF&S impact coupled with 4,6 Ref JMP		
and Wiggler layouts	3/27/07	risk of 4,6 is reduced	Med
(6) Plan for having room for future			
double ring, later decision	Ref JMP 3/27/07	double ring is unlikely	Very low
(7) General concern with		I kickers satisfy most specifications but still	
)9njection@sttaDieGN/cker		there are concerns on the reliability. The	18
performance	Ref JMP 3/27/07	cost per unit should be lower.	Med

	Concern		RISK	COST	r*C	MITIGATION
Ļ	(1) Secondary Emission Yield too high. >1.2	Q	• • •	200	100	Return to two e+ ring design after extensive R&D programs
	(2) Vacuum system design not robust		Med	20	5	Redesign vacumm system with more distributed pumping
	(3) High impedance of vacuum chamber components		Med	10	3	More engineering design or DR re optimization
	(4) RF Margin	a	Med	50	13	Increase klystron/cavity system by 50%
	(5) Combination of concerns with RF and Wiggler layouts	a	Med	100	25	Increase in number of shafts and alcoves
	(6) Plan for having room for future double ring, later decision	Q	Low	20	2	Increase tunnel diameter and include above (5)
	(7) General concern with injection/extraction kicker					Increase no of kicker units and/or
	performance		Med	20	5	restrict parameter ranges

Risk analysis

SB2009

		COMMENTS/NOTES	UPDATES		
(1) Secondary Emission Yield too high. >1.2	Q	Assumes CF&S designs have been changed to allow this possibilty. Ref JM 3/27/07	Mitigation Techniques can lower e-cloud density below instability threshold. Effect of MT on vacuum system design, cost and impedance not yet evaluated, see 2,3.	Very low	200
(2) Vacuum system design not robust		Early decision is less expensive and les impact on other systems Ref JMP 3/27/07	Present vacuum system design includes antechamber in dipoles (1) and more pumping speed. Cost will be available in few weeks.	Hiah	20?
(3) High impedance of vacuum chamber components		Could be input to review of design parameter range Ref JMP 3/27/07	recent estimates indicate that nominal parameters are below the thresholds for microwave and other instabilities	Very low	10
(4) RF Margin	Q	Coupled with items,5,6, has large impac on CF&S Ref JMP 3/27/07	Not needed since momentum compaction has been reduced	Very low	50
(5) Combination of concerns with RF and Wiggler layouts	Q	CF&S impact coupled with 4,6 Ref JMP 3/27/07	Space for RF and wigglers is half	very low	100
(6) Plan for naving room for future double ring, later decision (7) General concern with	Q	Ref JMP 3/27/07	double ring is unlikely kickers satisfy most specifications but still	Very low	20
in science with the ser		Ref JMP 3/27/07	there are concerns on the reliability. The cost per unit should be lower.	_{Med} 19	20?

- R&D in progress is useful for both
- Beam dynamics: repeat evaluation for the new lattice
- TD and Cost evaluation
 - Work done for the 6 km ring straight sections can be used for the 3 km
 - Work done for the arcs has to be updated (using SuperB information)
- Schedule a webex meeting to update DR plan and prepare for discussion at Albuquerque

CONS

- Half bunches

• PROS

- Half cost

Damping Rings Fill Pattern

Sendai 2008

RDR 2007

Damping Rings Fill Pattern	Damping Rings Fill Pattern			Nominal EDR Circumference				RDR Circumference				
DR bunch spacing	DR RF buckets	2	2	2	2	4	4	2	2	2	3	4
Pattern repetition factor	р	117	90	78	65	58	32	123	118	82	71	61
Bunches per even-numbered minitrain	f2	0	0	0	0	23	23	0	0	0	22	22
Gaps per even-numbered minitrain	g2	0	0	0	0	30	126	0	0	0	37	32
Bunches per odd-numbered minitrain	f1	45	45	45	45	22	23	44	44	44	22	22
Gaps per odd-numbered minitrain	g1	30	66	90	126	30	122	30	35	89	34	28
Linac average current	milli-amps	9	9	9	9	9	5	9	9	9	9	9
Derived Parameters												
Ring harmonic number		14042	14042	14042	14042	14042	14042	14516	14516	14516	14516	14516
DR circumference	meters	6476	6476	6476	6476	6476	6476	6695	6695	6695	6695	6695
DR average current	milli-amps	405	405	405	405	401	226	396	396	396	393	393
Total number of bunches		5265	4050	3510	2925	2610	1472	5412	5192	3608	3124	2684
Bunch population	1,00E+10	1,04	1,35	1,56	1,87	2,07	2,07	1,02	1,06	1,53	1,75	2,04
Extraction kicker interval	DR RF buckets	120	156	180	216	240	432	118	123	177	203	236
Linac bunch spacing	Linac RF buckets	240	312	360	432	480	864	236	246	354	406	472
Linac bunch spacing	nanoseconds	184,62	240,00	276,92	332,31	369,23	664,62	181,54	189,23	272,31	312,31	363,08
Linac pulse length	microseconds	971,82	971,76	971,72	971,67	963,32	977,65	982,30	982,30	982,21	975,34	974,14
Average injected power	kW	219	219	219	219	217	122	221	221	221	220	219
Total population of damping ring	1,00E+13	5,46	5,46	5,46	5,46	5,41	3,05	5,52	5,52	5,52	5,48	5,47
Linza hunah anzaing (huakata) mad 6			0	0	0	0	0	2	0	0	A	A
Linac bunch spacing (buckets) mod 0			0	0	0	0	0	2	0	0	4	4
Linac bunch spacing (buckets) mod 12			0	0	0	0	0	20	0	10	10	4
Linac buildh spacing (buckets) mou 24		0	0	0	0	0	U	20	0	10	22	10

ilr ilt