

# **BDS/MDI**

Deepa Angal-Kalinin

Andrei Seryi

AD&I Meeting, DESY, May 29, 2009



### **BDS WA**

- Maintain support for the 1 TeV geometry (missing magnet or some other suitable scheme)
- Assuming 10-15% (TBD including e+ target dogleg)
   synchrotron radiation emittance growth at 1 TeV CM.
- Support for travelling focus IP parameter set (L~2 x  $10^{34}$  with  $n_b$ = 1312)

### **Questions:**

- What is the status of a compact lattice design with the above WA
- 2. Location of non-beamline components (klystrons, P/S etc)



# Status of compact lattice design

- RDR lattice : three changes
  - Separate functionality of upstream polarimeter, MPS and laser wire photon detection
  - Design of dogleg: with transverse off-set (~2.5-1.5m)
  - Shortening of BDS: allowing more emittance growth
- Support for travelling focus





### Central region integration: Minimum Machine, BDS



- 2.5m can be reduced to up to 1.5m if beam passes through a drift space for ~40-50m without any components through the remote shielding block of the target.
- If 2.5 m, not enough space for tuning beam line. Take the beam vertically to beam dump?



### Minimum Machine



Space for tuning line and dump?
Positron side will be similar to the RDR (modified as necessary). Layout implications.



# **Dogleg Chicane Designs**

- Comparison of three designs
  - TESLA TDR dogleg
  - Big bend of 2mrad (with 2 IR configuration : 2 and 20 mrad)
    - Modified to get an off-set of 1.5m
    - Combined function dipoles
  - Theoretical Minimum Emittance lattice



# TESLA TDR and 2mrad big bend lattices



29th May'09





# Comparison of emittance growth and number of magnets

| Lattice                                                   | Transverse off-set | Normalised Emittance growth due to dogleg       | Number of magnets       |
|-----------------------------------------------------------|--------------------|-------------------------------------------------|-------------------------|
| TESLA TDR                                                 | 0.7 m              | 681nm@400GeV<br>~8.5%<br>2544nm@500 GeV<br>~25% | Dipoles 96<br>Quads 16  |
| Big Bend like<br>(20 mrad and<br>2 mrad<br>configuration) | 1.5 m              | 493nm@400 GeV<br>1927nm@500 GeV<br>(~19%)       | Dipoles 160<br>Quads 34 |
| TME                                                       | 1.5 m              | 49nm@400 GeV<br>154nm@500 GeV<br>~1.6%          | Dipoles 20<br>Quads 134 |

29th May



# Theoretical Minimum Emittance Lattice

- TME lattice presently have integrated strength of quadrupole =1.5T, pole tip will be 1.5T for 10mm radius (will be 0.9T for 6mm radius – probably okay to have this radius after undulator?)
- Number of magnets are too large. But this is extreme case for minimum emittance growth.
- Looking at the possibilities of using weaker quadrupoles, stronger dipoles (possibly with field gradients) which can give reasonable emittance growth.

29th May'09



# Reduction in RDR FFS length

- Emittance growth <1% @1TeV for RDR, Final focus length Total=1582m (betatron coll=388m, energy coll=407m, beta match=245m, FT=540m)
- To allow more increase by shortening the length, use analytical dependence on the length

$$\frac{\Delta \sigma_y^2}{\sigma_y^2} \propto \frac{\gamma^5}{L^2} \, \eta_B^{\prime 3} \propto (\gamma \varepsilon_y)^{3/2} L^{*3} \left(\frac{\eta_{1P}^{\prime 2}}{\varepsilon_x}\right)^{3/2} \left(\frac{\varepsilon_x}{\varepsilon_y}\right)^{3/2} \frac{\gamma^{7/2}}{L^5}$$

$$\frac{\Delta\sigma^2}{\sigma^2} \propto \left(\frac{\Delta\sigma^2}{\sigma^2}\right)_0 / (1 - dL/L_0)^5$$

 $\frac{\Delta \sigma^2}{\sigma^2} \propto \left(\frac{\Delta \sigma^2}{\sigma^2}\right)_0^{1/(1-dL/L_0)^5}$  dL is shortening of length (Lo is initial length of FF) is what we can allow for shorter FF, let say it is 0.4, which if added in quadratures give 8% of beam size growth. we can allow for shorter FF, let say it is 0.4, which if added in quadratures give 8% of beam size growth.

For = 0.1,  $L_0$ =540m, dL~145m in FFS,

For = 0.2,  $L_0$ =540m, dL~70m in FFS (need to check exact numbers)

- + may be similar reduction from E-collimation (but there will be some increase in the length due to additional chicane for the polarimeter chicane!).
- Complete re-fitting of the FFS will be required, beam sizes on the E-collimator and phases advances of betatron collimators w.r.t. FD.



# Support for travelling focus

- Travelling focus can be created in two different ways: PAC09 Paper WE6PFP082
  - small uncompensated chromaticity and coherent E-z energy shift dE/dz along the bunch.
    - $\delta E \ k \ L_{eff}^* = \sigma_z$ ; k=relative uncompensated chromaticity.  $\delta E$  needs to be 2-3 times the incoherent spread in the bunch.

Possible set :  $\delta$ E=0.3%, k=1.5%, L\*eff=6m

- Use a transverse deflecting cavity giving a z-x correlation in one of the
   FF sextupoles and thus provide z-correlated focusing.
  - The cavity will be located about 100m upstream of the final doublet, at the  $\pi/2$  betatron phase from the FD.
  - The strength required will be ~20% of the nominal crab cavity.
- Tracking studies and possibly mitigation of higher order aberrations are needed for both the schemes.
- Evaluation by detector concepts?



# New Low P parameter option



Luminosity vs beam offset

High sensitivity to any beam offset => operation of the intra-train feedback and intra-train luminosity optimization will be more challenging.



## **Pros & Cons**

#### Pros:

- Sacrificial collimators in the e- side before undulator, BDS aperture can be reduced in the initial section
- MPS before undulator
- Low power design of extraction line
- Reduced length of BDS

#### • Cons:

- Dogleg; emittance dilution
- Asymmetry in the layout (on e-,e+ side)
- Implications to commissioning due to integration, less flexibility



### Risk Register: RDR

|     |                                                   |      |      |     |      | _                                             |                     |
|-----|---------------------------------------------------|------|------|-----|------|-----------------------------------------------|---------------------|
|     | Concern                                           | RISK | COST |     | RISK |                                               |                     |
| BDS | (1) Final Doublet Jitter                          | High | 30   | S4  | Med  | Continuing engineering studies and prototypes |                     |
| BDS | (2) Beam Halo too large                           | Med  | 50   | S4  | Med  | Install longer muon or magnetized walls       |                     |
| BDS | (3) Prompt Push Pull<br>Operation                 | High | 50   | E/P | Med  | Detail engineering                            | h                   |
| BDS | (4) Adequacy of Beam Dumps windows, shielding etc | Med  | 50   | E/P | Med  | Longer tunnels, more shielding etc            | si<br>c<br>fi<br>fi |
| BDS | (5) Laser wire Diagnostics                        | High | 30   | E/P | Med  | Engineering and prototypes. Tunnel length     | ro<br>fo            |
| BDS | (6) Collimation Performance                       | Med  | 50   | E/P | Low  | Measurements and studies                      | n                   |
| BDS | (7) Crab Cavity Performance                       | High | 20   | S4  | Med  | Engineering and prototype tests               | p                   |
| BDS | (8) Fast Feedback<br>Performance                  | Med  | 20   | E/P | Low  | Expts and studies at ATF2 etc                 | h<br>I              |
| BDS | (9) Energy & Polarization Diagnostics             | High | 20   | E/P | Med  | Design and prototyping                        | C                   |
| BDS | (10) Performance of FF<br>Optics                  | Med  | 200  | S4  | Low  | Continuing studies at ATF2                    |                     |
| BDS | (11) FD size and 14mrad                           | Med  | 20   | E/P | Low  | Detail engineering and prototyping            |                     |

Need to update the risk register: separation of combined functionalities of first chicane will reduce the risk for LW and polarisation measurements.

Crab cavity RF phase tests @CI have reached the ILC goal (April'09) for single cell cavities.



### Plans

- Change the RDR layout to separate functionalities of first chicane and include separate polarimeter chicane
- Finalise the dogleg design with optimum number of magnets and reasonable emittance growth
- Check the required final focus/E-coll emittance growth by rescaling using analytical formulae, re-scale accordingly
- Implementation of travelling focus and changes to lattice design
- Discuss with MDI group for evaluation of these changes

29th May'09