CALICE Tail-Catcher Muon-Tracker(TCMT) Preliminary Test Beam Results

Kurt Francis NICADD/Northern Illinois University For CALICE Collaboration

APS MEETING Denver, CO May 2-5, 2009

1

- The CALICE Tail-Catcher Muon-Tracker
 - Goals:
 - Prototype ILC muon detector using SiPMs
 - Correct for leakage due to thin calorimeters
 - Test Beam needed to:
 - Study end of hadronic shower & validate simulations available
 - Understand & address impact of coil
 - Understand TCMT in PFA framework
 - Achieve good μ ID and control fake rates
- Preliminary Results from CERN
- Analysis of depth of calorimeter system on Energy resolution and improvements due to added tail-catcher

CALICE Tail-Catcher Muon-Tracker Prototype

Mechanical Structure/Absorber

- "Fine" section (8 layers)
 - 2 cm thick steel
- "Coarse" section (8 layers)
 - 10 cm thick steel
- Engineered and assembled by Fermilab PPD
- 16 Cassettes:
 - Extruded Scintillator Strips
 - 5mm thick
 - 5cm wide strips
 - Tyvek/VM2000 wrapping
 - Alternating x-y orientation
 - Readout
 - WLS Fiber
 - SiPM photo detection
 - Uses common electronics (DESY) readout with CALICE HCAL
 - Uses common CALICE DAQ (Imperial college)

• Dimensions:

•

- Length (along beam) 142 cm
- Height 109 cm
- Weight ~10 tons

Design Motivations

- TCMT required for sufficient depth to contain hadronic showers and validate Monte Carlos for PFA studies.
- For many ILC concepts calorimetry is thin and inside the coils. The outer solenoid flux return is composed of layers of Fe plates with gaps: consideration of a tail catcher is natural.
- Used SiD ECAL/HCAL simulation to understand effects:
 - 4.6 nuclear λ
 - 5T solenoid coil + cryostat
 1.27λ.
 - HCAL outer radius is 2.37 m.
 - The muon system outside solenoid and cryostat at radius ~3.50 m.

TCMT Cassette Components

CALICE @ CERN Test Beam

CALICE Calorimeters at Test Beam

- ECAL
 - 30 active layers of silicon diode pad detectors with ~10,000 channels
 - tungsten absorbers with thickness of 1.4mm to 4.2mm
 - total thickness 24X₀ radiation length
- HCAL
 - Up to 38 absorbers (30 used in 2006) 1.6cm thick steel
 - Gaps instrumented with 0.4mm thick modules with high granularity core (3x3cm^2)
 - During 2006 Run
 - Layers 1-17 all instrumented
 - Layers 19-29 every other layer instrumented
 - Total of 23 layers x 216 chan/layer = 4968 channels
 - During 2007 Run
 - Layers 1- 30 all instrumented
 - Layers 31 38 without high granularity core scintillators
 - > 7500 channels
 - 4.5 interaction lengths
 - Rotating stage used for position and angle scans in 2007 run
- Test Beam Runs
 - 2006 August/September and October/November (discussed here)
 - 2007 June to August (still under analysis)

Current Analysis

- The effect of TCMT and coil on leakage was studied
- Compared resolution of a calorimeter as a function of thickness with a system with calorimeter, coil, and tailcatcher
- Used a subset of TCMT layers, leaving a gap equivalent to 1.8 +/- 10% lambda to simulate magnetic coil
- Used CALICE October 2006 CERN data

CALICE Configuration, Oct. 2006

Would like to compare Energy Resolution of : ECAL + HCAL + n TCMT Layers With: ECAL + HCAL + n TCMT Layers + 1.8 λ gap + remaining layers of TCMT

Allocation of TCMT Layers

(Layer 11 in this example. Five remaining layers form tail catcher.)

N layers added to ECAL+HCAL (two layers in this example)

Layers of TCMT added to calorim eter	End of simulated coil/ first layer of tailcatcher	TCMT layers used behind coil
0	10	7
1	10	7
2	11	6
3	11	6
4	11	6
5	11	6
6	11	6
7	12	5
8	12	5
9	12	5
10	13	4
11	14	3
12	15	2
13	16	1

Allocation of TCMT Layers (cont.)

Layers of TCMT added to calorimeter	Thickness (cm)	Thickness (interaction lengths)	End of simulated coil	TCMT layers used behind coil
0	29.84	1.82	10	7
1	25.85	1.58	10	7
2	33.68	2.06	11	6
3	31.68	1.94	11	6
4	29.68	1.81	11	6
5	27.68	1.69	11	6
6	25.68	1.57	11	6
7	33.52	2.05	12	5
8	32.52	1.99	12	5
9	29.52	1.80	12	5
10	29.52	1.80	13	4
11	29.52	1.80	14	3
12	29.52	1.80	15	2
13	29.52	1.80	16	1

Energy Resolution as a Function of Calorimeter Depth

Improvement in Eres as a Function of Beam Energy

At 5.5 λ , the proposed thickness of the SID calorimeter

Summary

- The CALICE TCMT behaves as expected to track muons and capture HCAL tail
- Detector is very stable
- Analysis is underway and progressing well
- SiPMs show good potential for calorimetry and muon detection
- At a Depth of 5.5λ (the design thickness of the SID calorimeter), a tai-lcatcher improves energy resolution by about 6%

Allocation of TCMT Layers

remaining layers form tail catcher.)

N layers added to ECAL+HCAL (two layers in this example)

Layers of TCMT added to calorim eter	End of simulated coil/ first layer of tailcatcher	TCMT layers used behind coil
0	10	7
1	10	7
2	11	6
3	11	6
4	11	6
5	11	6
6	11	6
7	12	5
8	12	5
9	12	5
10	13	4
11	14	3
12	15	2
13	16	1

Allocation of TCMT Layers (cont.)

Layers of TCMT added to calorimeter	Thickness (cm)	Thickness (interaction lengths)	end of simulated coil/first layer of TCMT	TCMT layers used behind coil
0	29.84	1.82	10	7
1	25.85	1.58	10	7
2	33.68	2.06	11	6
3	31.68	1.94	11	6
4	29.68	1.81	11	6
5	27.68	1.69	11	6
6	25.68	1.57	11	6
7	33.52	2.05	12	5
8	32.52	1.99	12	5
9	29.52	1.80	12	5
10	29.52	1.80	13	4
11	29.52	1.80	14	3
12	29.52	1.80	15	2
13	29.52	1.80	16	1