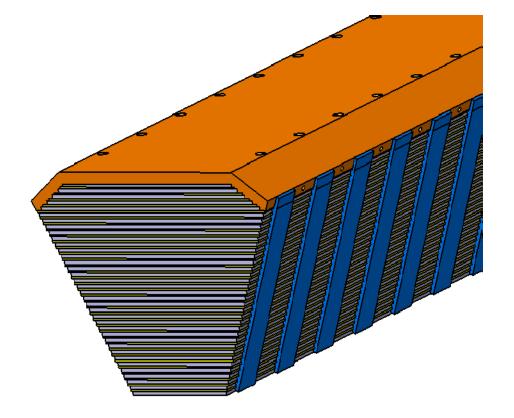
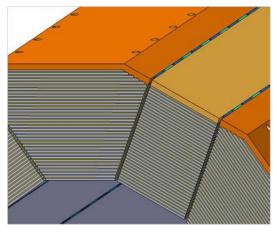
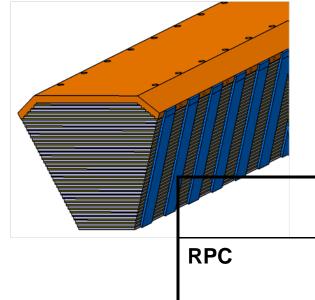
Towards a Technical Prototype


José Repond Argonne National Laboratory


CALICE Technical Board Review Fermi National Laboratory June 12, 2009

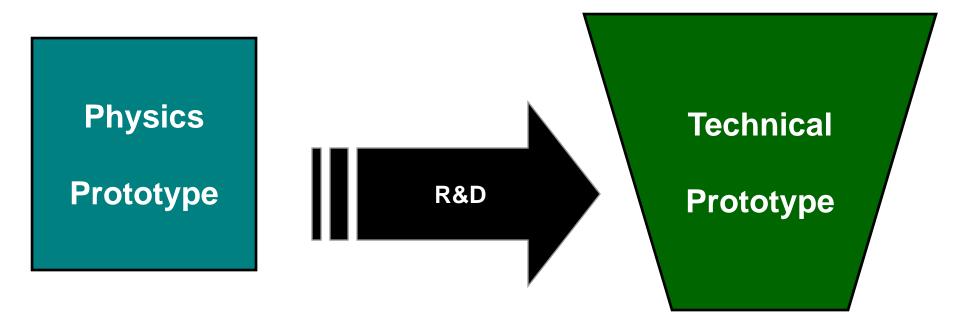
What is a Technical Prototype

E.g. SiD's latest ideas about the HCAL barrel


12-sided polygon

Technical prototype module

Wedge-shaped 6 m long 40 active layers 120 m² of RPCs


approximately

Connections to the outside world

	Connection	1 m ³ prototype	Technical prototype
RPC	Gas inlet	40	1
	Gas outlet	40	1
	High-voltage supply	40	1
	High-voltage computer control	-	1
Front-end electronics	Low-voltage	120	1
	Cooling water inlet	40	1
	Cooling water outlet	40	1
	Data cable	240	1

Topic of this Talk

View from the U.S. DHCAL group...

A. Large Area RPCs

Area approximately up to 1 x 6 m² in one layer

How to handle 3 - 6 m long glass, is it available?

Typical thickness 0.8 – 1.1 mm

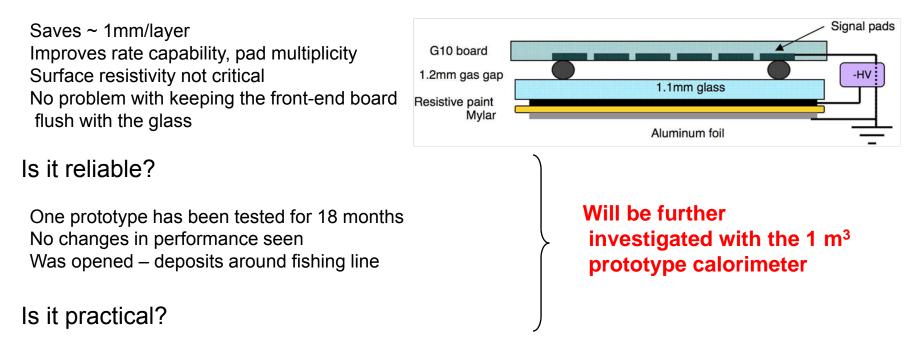
How to distribute high voltage on the surface?

Difference in high voltage leads to different efficiency

How to circulate the gas within a chamber?

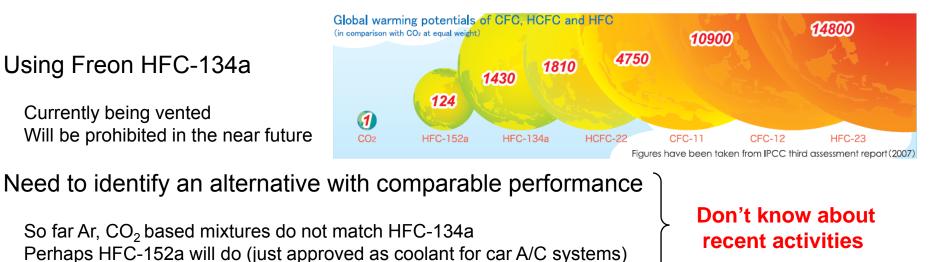
Flow needs to be uniform, since gas contamination uniform

How to minimize the dead area?


In 1 m³ prototype about 3.3% (frame) + 1.4% (fishing lines)

Currently not being investigated

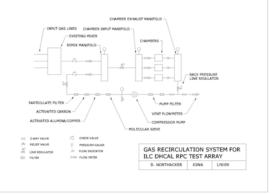
B. Thin RPCs


Marty keeps telling us that every mm costs several M\$

One-glass design developed by Argonne

Once glued on, the front-end board can not be exchanged, without destroying the chamber

C. Gas System


Need to recirculate the gas

Difficult issue Not entirely successful at the LHC We have new ideas...

Gas distribution within a module

Major headache

Needs manifolds, implemented in wedge structure Needs to provide same gas flow to each layer!

Requested funds for lowa to develop

D. High Voltage Distribution

Currents in RPCs are small (~nA)

Voltages are high (~6.3kV)

Variations between layers due to construction

Need to set HV in each layer individually Need ability to measure current in each layer Need ability to switch off sparking layers

Brilliant idea?

Cockcroft-Walton technology?

Requested funds for lowa to develop (together with Argonne)

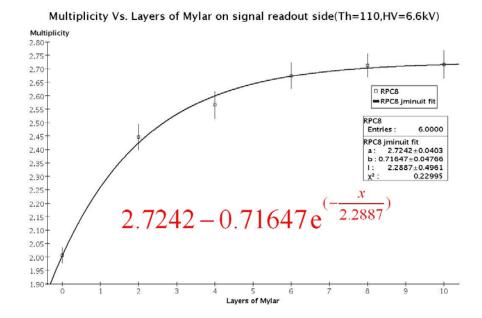
E. Cassette structure

Needed to protect RPCs (glass) Needed to maintain smallest gap between glass and pad-board

 $\rightarrow~$ Only for 2-glass design $~\leftarrow~$

Not needed for cooling of Front-end electronics?

DCAL power consumption ~ 0.2 Watt/chip Assuming 120 m² \rightarrow 1,200,000 channels \rightarrow 18750 ASICs \rightarrow 3750 Watt/module Power pulsing (?) reduces this to 40 Watt/module

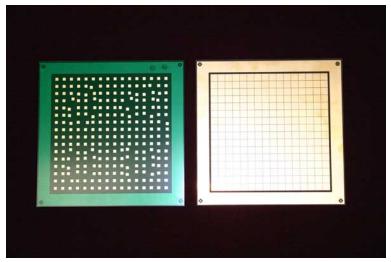

Test beam, Cosmic Rays

Requires triggered readout Can't apply power pulsing efficientl Needs cooling...

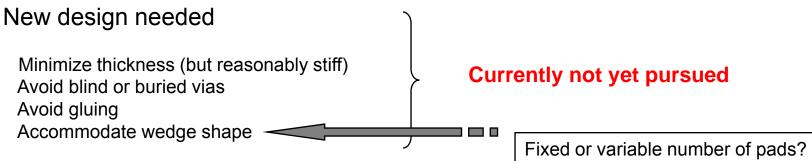
Additional challenge

Cassettes needs to be stiff enough not to crash the glass, electronics

 $\rightarrow\,$ in any module orientation $\,\leftarrow\,$


Experience with 1 m³ prototype calorimeter will help

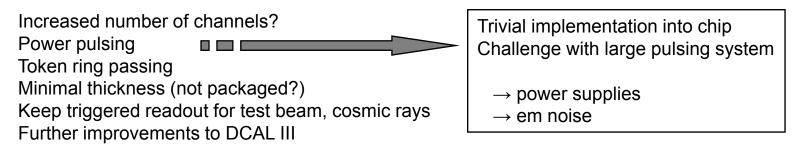
F. Pad-board

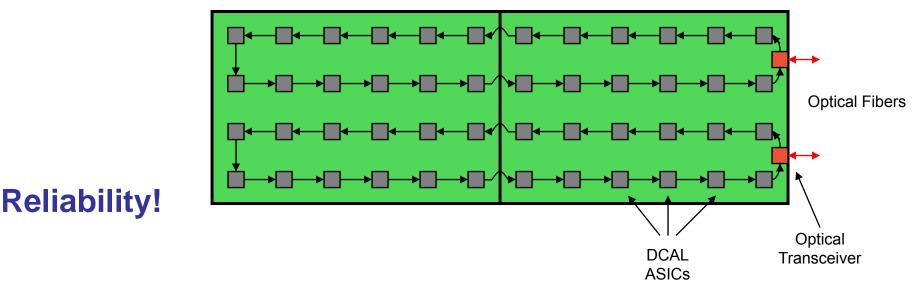

Current design

Pad-board separate from front-end board Neither has costly blind or buried vias Connection to front-end board with conductive glue Total thickness of pad- + front-end boards ~ 3 mm Fixed width for 1 x 1 m²

Assuming we keep the 1 x 1 cm² segmentation

Fixed or variable width of pads?


G. Front-end ASIC


Currently (DCAL III chip)

64 channels/ASIC No power pulsing Direct communication with data concentrators Height ~ 1.4 mm

Needed for the technical prototype

Memorandum of Agreement between ANL and FNAL concerning the design of ASICs Plan is to work on DCAL IV (among other things)

H. Front-end data concentrator

Reliability!

Currently

6 x 4 ASICs per board \rightarrow 1 data concentrator

Exploit more modern technologies

e.g. Gigabit Transceivers

Serving a whole row of ASICs (up to 50) Output 1 single optical fiber to be routed to outer edge of module Currently not yet pursued

I. Low-voltage distribution

Currently

1 cable per front-end board

Need to develop

Distribution system Ability to turn on/off each layer individually Ability to measure currents to each layer individually Ability to handle power pulsing

Currently not yet pursued

J. Back-end readout system

Currently

VME based system located in rack LVDS communication with data concentrators

Technical prototype needs

System located in back beam area Optical fiber link with front-end **Currently not pursued (by us)**

K. Mechanical Structure

Currently

Being developed by both ILD and SiD

Details of the design

Depend on the outcome of the above mentioned R&D Significant effort needed to design a viable structure

Not yet urgent

L. Magnetic field

SiD plans on 5 Tesla field ILD plans on 3.5 Tesla field

RPCs

Ammossov tested RPCs in 4(?) Tesla field and found no effect Findings need to be confirmed

Electronics

All components need to work in magentic field Power pulsing the front-end will be particularly challenging

Overview of R&D for Technical Prototype

R&D topic	Being addressed	Planned to be addressed	Plan to be developed
Large area RPCs			х
Thin RPCs	x		
Gas system, distribution		x	x
High Voltage distribution		x	
Cassette structure		x	
Pad board			x
Front-end ASIC		x	
Front-end data concentrator			x
Low Voltage distribution			x
Back-end readout system			x
Mechanical structure	x		

Lots of challenges and work...