PROGRESS REPORT **ON MPPC** CALICE meeting at Lyon 2009 Tohru Takeshita (Shinshu) Kobe, Tsukuba,& KNU (+Tokyo/ICEPP)- scECAL radiation tolerance long term stability test device simulation

MPPC

* multi-pixel Geiger Mode Avalanche photo Diode

- •High Gain (>10⁵)
- Compact (package size ~a few mm)
- Low Cost
- Insensitive to magnetic field

- Dark count
 - (thermal electrons)
- Secondary photons from avalanche (X talk)
- Input vs output is non-linear

Gamma irradiation

Prospective damage Charge accumulation on the oxidized layer.

Dose amount

10 Gy/h for 3 hours →30 Gy 10 Gy/h for 6 hours →60 Gy 10 Gy/h for 12 hours →120 Gy

Gamma irradiation results

There seem no significant changes on the gain by gamma-ray radiation.

The current has increased drastically. (about 90 Gy)

120Gy

The leakage current have increased by gamma-ray radiation. T.TAKESHITA@CALICE_LYON 2009

gamma irrad. results

radiated	before	after
30 Gy	•	•
60 Gy		

The noise rate have increased by gamma-ray radiation.

no significant changes on the crosstalk probability by radiation.

gamma irrad.

- * hot spot pictures
- * indicate making
 noises
- * increased
 number of hot
 spots (a bit)
- * at oxidized layer
- * as expected

120 Gy radiated (zoomed)

gamma irrad.

* no significant change in saturation curve

Neutron irradiation test

***** Prospective damage

Increasing lattice defect in silicon bulk

Flux

3.1×10⁸ neutron/cm²
3.1×10⁹ neutron/cm²
3.1×10¹⁰ neutron/cm²
3.1×10¹¹ neutron/cm²

Radiation test location The reactor YAYOI (Fast neutron source reactor of the University of Tokyo)

neutron irrad.

neutron irrad.

* leakage current

radiated	before	after
10 ⁸ /cm ²	•	•
10 ⁹ /cm ²	-	-
10 ¹⁰ /cm ²		
10 ¹¹ /cm ²	▼	▼

* very much increased

significant changes on noise rate.

nges on the crosstalk probability radiation. neutraliated (zoomed) irrad.

* hot spot pictures

increased number of hot spots > 10⁹ at sensitive area

neutron irrad.

- * saturation curve
- * no significant effect

long term stability test

* gain monitor

* NO gain change in 10 years of ILC

understanding of MPPC

* simulation of avalanche inside a MPPC pixel

Avalanche Multiplication (1

summary & outlook

- * gamma irradiation
 - * 60Gy seems OK (ILC 10 years ~ 10Gy)
- * neutron irradiation
 - * 10^8 n/cm² seems to be OK
 - * increase leakage current
- * long term stability
 - * stable enough for 45 days (~10 year of ILC)si
- * simulation understudy to improve MPPC T.TAKESHITA@CALICE LYON 2009

* different readout circuit

Type A

Type B

MPPC Pulse shape

average