# **Direct Coupling Simulations**

François Corriveau and Alexandra Thomson

IPP/McGill University



CALICE Collaboration Meeting, Lyon, France 18 September 2009

- Direct coupling (see talk by Frank Simon)
- Standalone simulation
- GEANT4 simulation
- Results
- Outlook

# **GEANT4 vs Standalone MC**

#### Standalone simulation by F.Corriveau, Z.Niu (2008) and A.Thomson (2009)

- Straightforward C++ code
- Beam description, ionisation, light emisssion
- Light propagation, reflection/absorption
- Several parameters available for understanding and tuning
- Histograms handled through ROOT

#### Geant4 code provided by V.Saveliev (Obninsk), developped by A.Thomson

- Setup done at McGill under Scientific Linux
- Tile geometry and properties provided as input, more flexible
- GEANT handles the physical processes, histograms through ROOT
- Many parameters (e.g. surface properties) are somewhat confusing
- Very useful to have both simulations programs vs actual data

# **Standalone Results**

### The MPPC is located in the center of the bottom face

#### 30x30x5 mm<sup>3</sup> tile

#### Measurement from NIU (V.Zutshi et al.)



as shown last year in Manchester

Scan Across Green Square Cell with White Paint





F.Corriveau, IPP/McGill Univ.

CALICE Week - 2008.09.18

### **2008 Configurations**



.. and numerous variations in position, sizes, tuning of attenuation, threshold, surfaces, beam, etc..

# **Absorbing Patch**



0.34%

#### with 7x7mm<sup>2</sup> patch

Absorbing patch of various sizes and reflectivities located on top of the tile, above the position of the Si-PM.

The result was the opposite of the naïve expectations, since the light produced further away was cut even more than the "central" one through repeated reflections.

#### without patch



#### average distributions across full tile for 90% patch absorption

F.Corriveau, IPP/McGill Univ.

# **GEANT – Types of Surface**



poor GEANT documentation on surface types

not included yet: smearing due to source

very large differences observed

need more sets of measurement data to tune the simulation

F.Corriveau, IPP/McGill Univ.

# **Spherical Cutout**



| Special example |               | GEANT Simulation             |                             |                      | Standalone           |
|-----------------|---------------|------------------------------|-----------------------------|----------------------|----------------------|
| Radius<br>[mm]  | Depth<br>[mm] | Deposited<br>Energy<br>[MeV] | Detected<br>Energy<br>[MeV] | Fraction<br>Detected | Fraction<br>Detected |
|                 | 0             | 17.90                        | 0.1766                      | 0.987%               | 1.182%               |
| 10              | 1             | 17.30                        | 0.0583                      | 0.337%               | 0.017%               |
| 10              | 2             | 16.64                        | 0.0585                      | 0.352%               | 0.020%               |
| 10              | 3             | 15.89                        | 0.0568                      | 0.358%               | 0.019%               |

#### Standalone: large variations due to arbitrariness of the threshold parameter

7/10

# **GEANT – Spherical Cutouts**



F.Corriveau, IPP/McGill Univ.

# **GEANT - Side Cutout**

#### From C. Solner, July 2007: 2mm spherical dimple



#### still non-uniformities



### Summary

- More than 200 different variations in many configurations tested with each of the standalone and GEANT simulation programs, some overlapping
- The simulations reproduce the general features of the available measurements (NIU, Regina, MPI Munich)
- Both simulations contain a too large number of loosely defined parameters
- Eagerly awaiting the release of the full data for tuning the simulation programs and have real predictive power in other configurations