

SLAB COOLING Calice week IPN Lyon

Julien Giraud (<u>giraud@lpsc.in2p3.fr</u>)

Julien Giraud – September 17th, 2009

First part : thermal comportement along the slab

Copper plate

Global installation

Sensor on copper plate

Parameters of the test:

Huge insulation / No cooling / 1 W on ASU number 8 directly stick on the copper plate (0.5 mm)) / 5 sensor temp / 48 h of test

What we expected:

 \Rightarrow Temperature of the copper plate should increase dangerously

What we found:

=> Temperature of the copper plate increase of a maximum of 14.5 °c

Conclusion of this test:

The thermal slab comportment can't be based to the comportment of the copper plate with conduction only.

 \Rightarrow We need to take into account the rest of the structure (W, composite material...)

On going : global simulation on slab section

 \Rightarrow We need to improve the model to take into account the material discontinuities

 \Rightarrow May have add cooling plate at the fastening side => we need space specially for the Endcap (30 mm)

Imposed temperature on copper plate

Second part : Thermal contact resistance characterization

Dry contact : 3.9 K / W

Contact with thermal paste (0.4 W/m/K) : 3.1 K / W

Thermal Paste => 20% gain

Ok if we have 0.5W / 1/2 slab => 1.55°... but 3.5W / 1/2 slab => 11°c

LPSC Summer Thermal Tests

Conclusion of the thermal contact resistance test :

EUDET COOLING

-Test performance of heat pipe system (easy to fix but lot of pieces (contact resistance)).

- Water circulation system with better connection with copper plate.
- => Adapt the design of the heat pipe system for the connection with the copper plate

..... Need a 45° one

Global COOLING

Leakless system :

- Low water speed =>We need space for the pipe, so we have check (3D model).
- Temperature and power range **ok** (use on many detector in CERN)

Co2 system : we are working on !

- High pressure
- Enable very low temperature (we don't need)
- Small pipe

Global COOLING

True scale leakless cooling system test :

Base line => leakless system => many different system to control the process (number of sensor, pressure and flow regulation)

We propose to build a true scale leakless cooling system (only one loop) to find the right component and process => 2010.

Alice leakless system

Conclusion : cooling

Slab test

- Slab cooling_tests in alveolar structure (LAL)
- Test heat pipe system in EUDET configuration (angle and power)
- Design and build a new water circulation cooling with better thermal contact End 09

Global cooling

Thermal numerical simulation of a section (barrel and end cap)
=> determine if we need cooling near fastening system
3D pipe integration in the global detector
Design and build a "true scale test loop" of the cooling system
2010

Oct 09

Oct 09