

Analysis of 2007 ECAL data

Daniel Jeans LLR Ecole Polytechnique

- energy resolution, linearity

- # hits

- shower shape
- fluctuations and correlations

data

Selection of e- runs taken at CERN in 2007 Beam momentum of 6 -> 50 GeV/c Normal incidence on ECAL

simulation

Small private samples of Mokka simulation (temporary)

- just three energy points: 10, 30, 50 GeV
- zero energy spread
- uniform beam profile across calorimeter
- simple digitisation
- "new" G10 definition

event selection

Same electron event selection as used for 2006 data:

- loose ECAL energy criteria
- reject double cluster events e.g. upstream showers

Stack energies weighted by factors 1./2./3. odd/even layer correction of 7.2% applied

Linearity and resolution of energy response

Select events far from inter-wafer gaps and detector edges - minimise leakage

centre_energyHitsTotal_All_330347

0.03

10 Ge

 γ^2/ndf

Prob

Mean

Sigma

38,93742

 2492 ± 7.1

 147.5 ± 7.4

Constant 41.48 ± 1.54

0.6063

Number of hits (cells with energy > 0.6 MIP)

events far from inter-wafer gaps and detector edges

2007 e- data (one per run) Mokka simulation

significantly more hits per event in data than simulation - energy dependent difference

NHits cont...

2007 e- data (one per run) Mokka simulation

Significant run-to-run variation in width of Nhits distribution

width of Nhits distribution perhaps better described than mean (?)

Correlation between energy & NHits

10 GeV data run 50004000

2007 e- data (one per run)

Relatively weak correlation, smaller at high energy

Rather large run-to-run

Sensitive to beam conditions

Energy-NHits correlation per layer

Interesting shape:

- correlation weakest @ shower max

quite well modeled in simulation

Some runs seem to behave differently, reason under study (pions?)

Shower shape: energy deposit

Shower shape: # hits

Layer-to-layer correlations

-0.8

-1

Conclusions

CERN 2007 e- data

- energy linearity and resolution (copy of 2006 analysis)
- number of hits
- correlations: energy-hits, layer-to-layer...
- preliminary simulation:
 # hits not well modeled correlations quite well described
- still a few data features to understand...

Plans

- request official MC: realistic momentum spread, beam profiles
- more sophisticated digitisation (?)
- document in a CAN (started...)

Dead chips in '08

Could not be cured by changing cable, FE connector, CRC board...

Tests with cosmic muons

 Tested bottom part PCB's with cosmics test bench at LLR: thanks to Jean-Charles Vanel, Franck Gastaldi, Simon Chollet

Cosmics tests '09

PCB_5_G - Layer 24

PCB_5_D - Layer 25

All chips work fine

Cosmics test '09 - II

PCB_5_D - Layer 25 – Middle wafer

All pads work fine

Pedestal Instabilities

Pedestal as a function of the time :

1

29

Pedestal Instabilities

Pedestal as a function of the time :

29

Pedestal correction (evt-by-evt)

- Start with rough guess of shift
- Reject hits with S/N criterion
- Iterative adjustment of pedestal and S/N criterion until RMS agrees with mean noise of PCB

Pedestal shift per chip

PCB_5_G - Layer 24 - wafer 4 & 6

Pedestal shift is different from chip to chip

Conclusions II

- Dead pads at FNAL'08 worked fine in cosmics tests
- Why ???
- Pedestal shifts are per chip and not per PCB
- Revise pedestal correction ???

