

HARDROC2: Statistical measurements

http://omega.in2p3.fr/

Nathalie Seguin-Moreau

Orsay Micro Electronic Group associated

TOWARDS A TECHNOLOGICAL PROTOTYPE Omega

CALICE meeting, IPN Lyon

HR2 test

- 400 chips to be tested to equip 1m² RPC and µmegas detectors
- \approx 300 chips tested this summer in ORSAY and in Lyon
- Good exercise before tests of productions (5000 chips)

<u> Mega</u>

LABVIEW SETUP @Rodolphe Della Negra (IPNL)

CALICE meeting, IPN Lyon

LABVIEW SETUP @Rodolphe Della Negra (IPNL)

 DC levels, power consumption, VBG, memory test, SC test with a « difficult config »

Conso before [mA] Conso before load SC 17,84537 Conso after load SC 30,28721 Test Slow Control 0	VALID DC_FSB[V] 2 DC_FSB 3,23878 VALID DC_SS[V] 2 DC_SS 3,23221	VALID VALID VALID V_BG 2,47070
T	rig CONFIG SLOW CONTROL DAC0:300,DAC1:1023,DAC2:1023 SS Gain:15,FSB1 Gain:8,FSB2 Gain:8 Trigger_write0:On,Trigger_write1:Off,Trigger_write2:Off All Channel Cap. Enabled All Channel Discriminator Active	RESULT MEMORY Trig0:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55, 56,57,58,59,60,61,62,63 Trig1:Trig2:
Test memory	DAC0:1023,DAC1:200,DAC2:1023 SS Gain:15,FSB1 Gain:8,FSB2 Gain:8 Trigger_write0:Off,Trigger_write1:On,Trigger_write2:Off All Channel Cap. Enabled All Channel Discriminator Active	Trig0:Trig1:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 54,55,56,57,58,59,60,61,62,63 Trig2:
VALID	DAC0:1023,DAC1:1023,DAC2:200 SS Gain:15,FSB1 Gain:8,FSB2 Gain:8 Trigger_write0:Off,Trigger_write1:Off,Trigger_write2:On All Channel Cap. Enabled All Channel Discriminator Active	Trig0:Trig1:Trig2:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33, 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51, 52,53,54,55,56,57,58,59,60,61,62,63

CALICE meeting, IPN Lyon

HARDROC2 measurements

mega

3 DACs linearity

SC measurements: pedestal, 100fC, 1pC

CALICE meeting, IPN Lyon

FSB0 Gain Correction

CALICE meeting, IPN Lyon

Read back of the measurements

CALICE meeting, IPN Lyon

DATA ANALYSIS

CALICE meeting, IPN Lyon

Results of the SC test performed on 274 chips

- Some gain configurations are sometimes difficult to load in hardroc2
 - Due to long connections between flip flops inside the chips: can be corrected with additional buffers on clk and data signals
 - necessity to increase digital vdd to 4V.
- But still, ≈50% of the chips exhibit pb with the loading of « difficult » SC config.
 - Gain=170 = 10101010 loaded 10 times, calculation of the ratio of success.
 - Anyway 90% of the chips OK for the other tests performed with various SC configs have to be loaded

mega

VBG

CALICE meeting, IPN Lyon

DAC0 slope

CALICE meeting, IPN Lyon

FSB0,1,2 PEDESTALS dispersion between chips

CALICE meeting, IPN Lyon

FSB0: before and after gain cor

FSB1 and 2 (pedestal subtracted)

HARDROC2 measurements

<u> Mega</u>

CONCLUSION

- 274 chips tested: Yield=90%
 - SC loading pb (Gain=170) => about 40% of the chips
 - 3: memory pb
 - 3: scurves pb
 - 4: minor pb (std slightly too high, pb of pins...)
- Hardroc2b submitted mid June for a medical application, minor modifications
 - Pinout UNCHANGED
 - Bandgap: offset minimised
 - Read/SC selection bug corrected
 - SC control register: buffers added on the Clk
 - Reception: in September => measurements before production submission
- Production foreseen end 2009/beginning 2010 for technological prototypes

mega