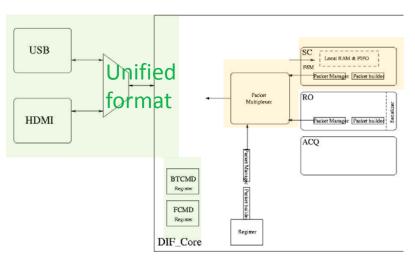


First SLAB prototype assembled (03/07/09)

ECAL : First SLAB prototype assembled (03/07/09)

- Basic firmware for the DIF is developed
- 50 MHz
- Multiplexed HDMI/USB
 - USB tested over few millions 256 B transfers

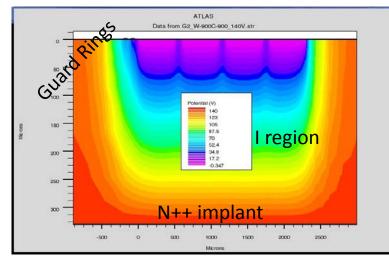
From HDMI


- Unique interface inside DIF
- Hardware tests have started by the end of August
 - FCMD
 - BTCMD
 - Slow control (unstable)
- Connection to SPIROC2 should be effective within 2 weeks

- Slow control interface to the ROCs
- Packet formatter and packet multiplexer

are being tested

Silicon Sensors



Si design

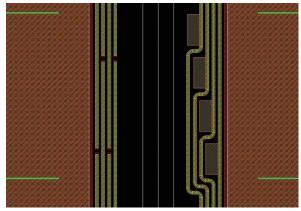
P++ implants (pixels)

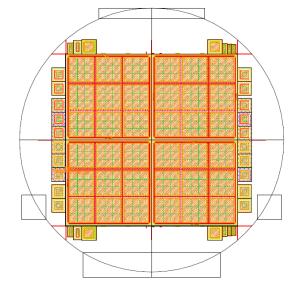
- The simplest design to control the cost
 - Few thousands of m² needed for ILD
 - Minimize the number of steps of the processing procedure
 - Guard rings = same as pixels
 - Glued on PCB : Floating GR
- Drawbacks : lack of optimization
 - Large dead zone at the edges
 - Crosstalk (Square Events)
- But...cost is still too high
 - 70 keur (including NRE) for 40 pcs of this hamamatsu prototype = 22 € / cm2 (14 w/o NRE)
 - Cost estimate for ILD : ~2 € /cm²

9x9 cm², 324 pixels

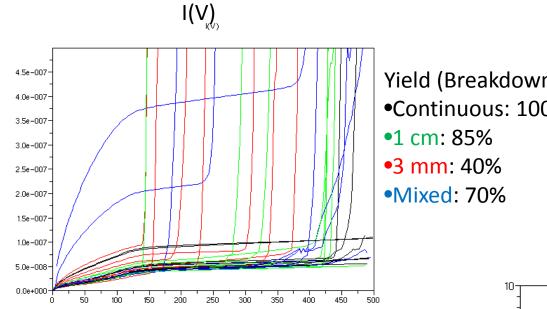
Si overview

- Experience with Czech, Russian and Korean sensors on the physics prototype
 - 500 nm, 6x6 cm², 36 pads
 - Square events : understood to come from guard rings
 - Dead area at the edges
- Search for new design techniques
 - Reducing crosstalk due to the GR
 - Segmented guard rings to avoid square events
 - Lowering Dead space (at the border)
- Improved design for the technological prototype (& particle flow physics)
 - Hamamatsu design: 300 nm, 9x9 cm², 256 pads
 - Have guard rings ! External charge injection shows square events...
 - Large dead space


 - Cost of prototypes: 70 k€ = 40 wafers(EUDET needs 160) batch received at LLR! NEW : Production) at LLR!


NEW : Prototypes are measured !

Segmented guard ring

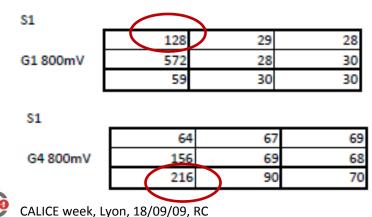

- Should avoid the signal propagation along the border of the wafer
- Idea tested thanks to PCBs and test bench at LPC (CALOR'08, NSS'08 talks)
 - Segmented topology helps to prevent SqEvt (factor) 50 on signal intensity)
 - What about current leakage & breakdown ?
- Prototype wafers have been manufactured (LLR made layout)
 - OnSemi/Institute of Physics (Prague), Cz
 - NEW : Prototypes received at BARC ! BhaBha Atomic Research Centre, India
 - Tests are ongoing

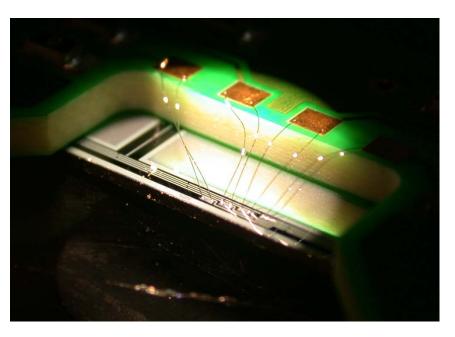
CNIS R&D on segmented guard rings

Yield (Breakdown >250V) •Continuous: 100%

Sum of GRs contribution Xtalk lowered by a factor 80 (with 3 mm segments (measurements made at LPC)

CALICE week, Lyon, 18/09/09, RC

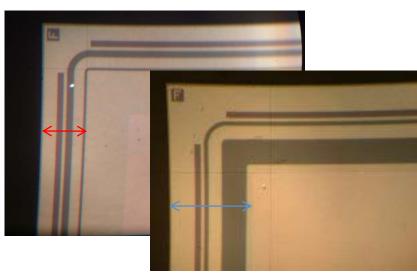


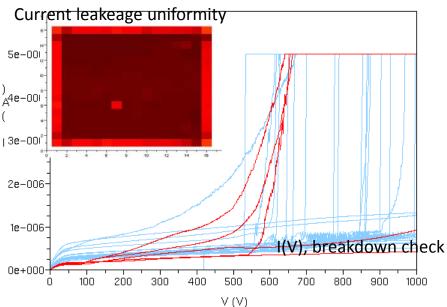

Next R&D prototypes of segmented guard rings

Vary Inter segment gap : 1 cm segment with 5, 10, 25 (actual: 50 um)

Distributed capacitance: Mixed: inner 2cm, 1 cm , outer 3mm - 1mm 2 conferences IEEE NSS'09 IEEE Sensors'09

bounding attempt at CERN in order to ease the measurements But it adds some Xtalk





Hamamatsu sensor V2

- Dead area decreased to 750 um (1200 μm previous)
- Leakage current issue seen at Hamamatsu
 - Level: x 5-10 wrt previous sensors , bad uniformity
 - They developed a new test setup : better!
- 5 samples + production batch of 35 pcs
 Current leakeage
 (received this week)
- Breakdown ok but seems to be slightly) Iower
- Have 40 sensors to start EUDET SLAB assembly (160 needed)

I(V)

Silicon Sensors

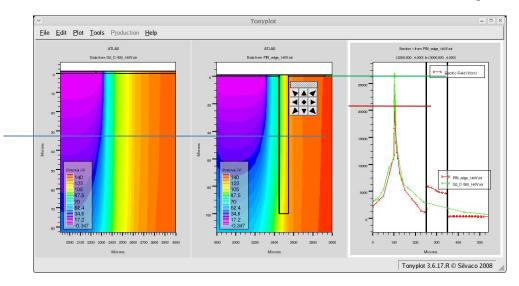
Some optimizations

3D sensors : lower Vbias, internal current flow, low sensibility to edge effects : can be ~edgeless (100 um)

tor Vertex detectors Cut through edge

Integration same technology as for 3D but used only at the edge no saw cuts, 3D edges 4-side abuttable ~*no dead space*, Deep trench etch, n doped polysilicon fill provides edge doping

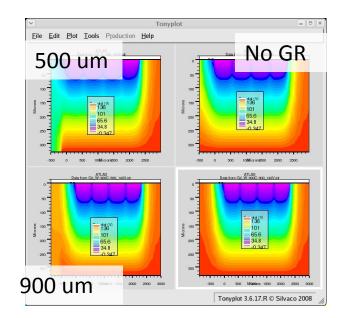
Trenches + saw cut : cost of trenching, post processing of every sensors, bad control of current.


Dry etching cut

Current terminating ring two rings but biased : thin contact needed, gluing not applicable edge width less than ½ wafer thickness **Double sided GR Doped edges** Crosstalk + ~edgeless ③ (300 um) **Punch-through biasing** Integration 😕 **Biased GR** edge 🙁 (800 um) Segmented GR : need further tests CALICE week, Lyon, 18/09/09, RC

12

Simulation tools examples



Disclaimer : an simulations included in this talk are doubtful, simplistic and wrong

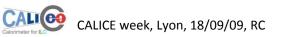
100 x 100 um

Lower Max E with a trench (red)

Double sided GR

Contributors to the previous prototypes

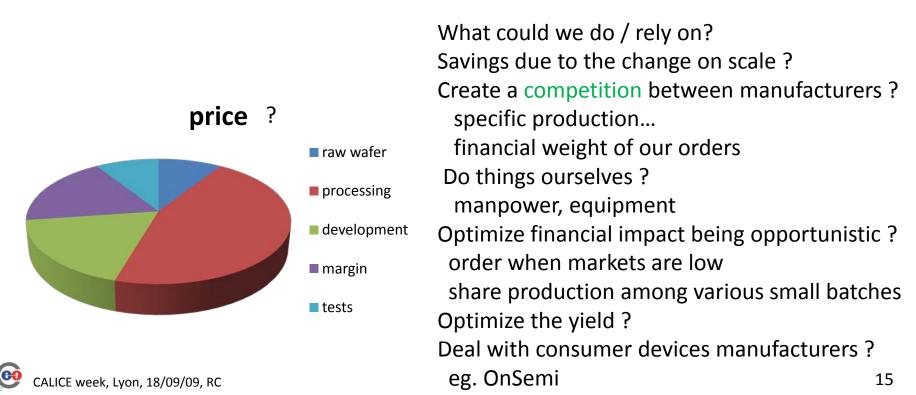
ON Semiconductor®



Governmert of India Department of Atomic Inergy SHABHA ATOMIC RESEARCH CENTRE

HAMAMATSU

The cost issue

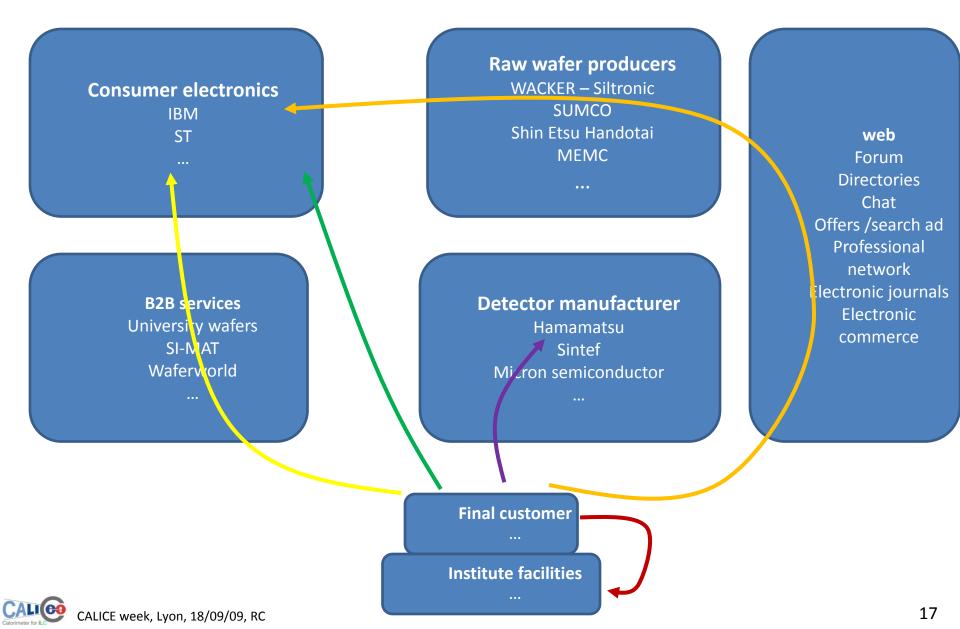

The cost estimate of a financially viable ECAL for

ILD assumes this input :

A cost at the level 2 \pounds / cm²

Now we are at the level of 10 to $20 \notin /cm^2$

About 2500 m² of sensors needed for SiW ECAL of ILD = 300 000 sensors (actual design)


Some market trends

- High resistivity silicon : RF & wireless, power devices
- New method to produce HiRes silicon with CZ process
- Manufacturing tools for 300mm
- R&D to produce 300 mm FZ ingots : 4 sensors
- Market is dominated by electronics and photovoltaic silicon, resistivity below 10 Ohms.cm
- Our production is rather small
- Some specific features
 - Passivation (Ileak, compatibility with glue)
 - Guard rings

Si Market Overview

The cost issue

Commercial market

- Market analysis
- Increase our visible weight to start bargaining
- Develop our contacts in the industry
- Find the necessary funding to invest in R&D with a panel selected of manufacturers

Institutional organizations

- Have the necessary knowledge of the manufacturing processes, develop our own R&D or production facilities ?
 - Silicon factory at fermilab
 - Association with existing European platform for micro/nano tech
 - Eg. MINERVE at Orsay, CEA-LETI, ...
 - European programs for technological platforms
 - Buy or loan an obsolete industrial production chain (eg. AMS 0.35 ?)
 - Show that we could do it ourselves

Conclusion

- Invest for future cost optimization
 - Funding (and manpower) for R&D
 - Opportunity of technological prototype
 - Several batches of sensors from various manufacturer
 - Establish relationship
 - Allow consumer devices manufacturers
 - Market study
- Avoid a dependence in a single design / manufacturer
- Increase our visible weight
 - Collaboration & network (CERN...)
 - Bargaining
 - Generate interest from consumer electronics manufacturers (ST, Samsung, OnSemi,...)
- Improve our tests / qualification procedure
 - Test beams
 - Test equipment
 - Exhibit a reasonable knowledge of the sensors to enable discussion and avoid the trap of dependence