Analysis of pion showers in the ECAL from CERN Oct 2007 Data

Takuma Goto (+David Ward)

- We study the properties of pion showers in the ECAL
- ♦ ECAL length $\sim 1\lambda_{abs}$ ⇒ incomplete showers, but this does allow us to focus on the initial interaction (cleaner?). Will contain the e/m component of the primary interaction.
- \blacklozenge Compare with GEANT models, including new physics lists in the β -release of Geant4.9.3
- Complements the AHCAL work. Allows us to study interactions in Tungsten.
- Main focus on energies ~8-20 GeV important for ILC jets and also main problem region for modelling.

Calice Meeting Lyon 16/09/09

Tak Goto + DRW

1

Summary of data and MC simulations

Reconstructed data

2007 data from CERN with v0406 reconstruction

- Run330641 8GeV π⁻
- Run330332 10GeV π⁻
- Run330645 12GeV π⁻
- Run330328 15GeV π^-
- Run330326 20GeV π⁻
- Run331298 30GeV π⁺

- GEANT4 simulations
 Mokka version 6.8.p01.calice
 GEANT 4.9.2.p01
 with physics lists...
 LHEP
 QGSP_BERT
 QGSC_BERT
 QGS_BIC
 FTFP_BERT
 - (as recommended by G4 authors)

FTF_BIC

and new in GEANT4.9.3.b01 QGSC_QGSC QGSC_CHIPS QGSC_FTFP_BERT FTFP_BERT_TRV

Calice Meeting Lyon 16/09/09

Tak Goto + DRW

Models used in Physics Lists (for π^{\pm})

- ✤ LHEP
 LHEP (<55); HEP (>25)
- ♦ QGSP_FTFP_BERT BERT (<8); FTFP (6-25); QGSP (>12)
- ✤ QGS_BIC BIC (<1.3); LEP (1.2-25); QGSB (>12)
- QGSC_BERT BERT (<9); QGSC (>6)
- ♦ QGSC_CHIPS QGSC_CHIPS (∀ energies) "energyflow i/f to CHIPS"
- ♦ QGSC_QGSC QGSC (∀ energies) "multisoft i/f to CHIPS"
 - FTFP_BERTBERT (<5); FTFP (>4)
- ♦ FTFP_BERT_TRV

٠.

- BERT (<8); FTFP (>6)
- ✤ FTF_BIC BIC (<5); FTFB (>4)
- n.b. Ranges overlap to provide smooth transitions between models. Energies in GeV
- Prerelease lists in *italics*.

Tak Goto + DRW

Event Selection I

- Electron/proton events reduced using signal from the Cerenkov.
- (Still Kaon contribution?)

Event Selection II

 Muon events are distinguished from the rest by comparing the data and pure muon MC simulation, looking at distribution of energy deposited in ECAL, HCAL and TCMT.

Identify first interaction layer

Identify the first layer at which 3 out of 4 consecutive layers >10MIPs Very simple, but after extensive scanning, seems to work as well as any more sophisticated procedure.

Calice Meeting Lyon 16/09/09 Tak Goto + DRW

First Interaction Layer – -12GeV (normalised to number of events)

Total ECAL energy

- First set of plots are total ECAL energy (simple 1:2:3 stack weighting for sampling fraction).
- Compare data to MC normalised to total no. of events
- Large low energy peak is seen (non-interacting pions + residual muons). The size of this is well modelled (i.e. xsections are basically OK), but otherwise not very interesting – suppressed.
- Since shower is incompletely absorbed, and the sampling is non-uniform, we are combining lots of different distributions. Hence maybe more useful to look at total energy in ECAL where the interaction layer is restricted to a limited part of the calorimeter.

Total Energy Dissipated in ECAL: -12GeV Data (yellow) c.f. MC (red) (Normalised to number of events)

QGSP_BERT, FTFP_BERT and QGS_BIC look best. None perfect.

Total Energy Dissipated in ECAL: -12GeV (Normalised to number of events) (10< interaction layer <21)

RMS 803 1200 1000 800 600 400 200 ᅆ 1000 2000 3000 4000 5000 6000 E_{ECAL} /MIPs 10<D<21

Calice Meeting Lyon 16/09/09

0 4000 5000 600 E_{ECAL} /MIPs 10<D<21

6000

°0

1000

2000

3000

Similar conclusions

E Ecal (0-10)+2.*(11-20)+3.*(21-30) /mips

Total Energy Dissipated in ECAL: -8GeV (Normalised to number of events) (10< interaction layer <21)

QGS_BIC and QGSP_BERT favoured?

CAMBRIDGE

Total Energy Dissipated in ECAL: -10GeV (Normalised to number of events) (10< interaction layer <21)

E Ecal (0-10)+2.*(11-20)+3.*(21-30) /mips

E Ecal (0-10)+2.*(11-20)+3.*(21-30) /mips

сансе меецид цуон то/оз/оз

E_{ECAL} /MIPs 10<D<21

IAK GULU + DKW

E Ecal (0-10)+2.*(11-20)+3.*(21-30) /mips

Total Energy Dissipated in ECAL: -15GeV (Normalised to number of events) (10< interaction layer <21)

E Ecal (0-10)+2.*(11-20)+3.*(21-30) /mips

E Ecal (0-10)+2.*(11-20)+3.*(21-30) /mips QGSC_BERT 2200 Run330328_v0406 Entries 33055 2000 Mean 1758 RMS 944.1 1800 Entrie 9711 1600 Mean 1837 1400 RMS 936 1200 1000 800 600 400 200 1000 2000 3000 4000 5000 6000 7000 E_{ECAL} /MIPs 10<D<21

E Ecal (0-10)+2.*(11-20)+3.*(21-30) /mips

E Ecal (0-10)+2.*(11-20)+3.*(21-30) /mips

LHEP clearly worst

Total Energy Dissipated in ECAL: -20GeV (Normalised to number of events) (10< interaction layer <21)

сансе меесину суон то/оз/оз

LHEP clearly worst

E Ecal (0-10)+2.*(11-20)+3.*(21-30) /mips

CAMBRIDGE

14

Total Energy Dissipated in ECAL: +30GeV (Normalised to number of events) (10< interaction layer <21)

E Ecal (0-10)+2.*(11-20)+3.*(21-30) /mips

Initial shower energy

- Next plots show ECAL energy in first 5 layers after interaction point.
- Aim is to provide some measure of the particles produced in the primary interaction at the ~full beam energy.
- Therefore can label plots by the interaction model(s) which are being invoked by each physics list at the beam energy (marked in red below).
- Because of unequal sampling it makes sense to restrict data to a small range of interaction layers. We used 11-15 (first half of second stack).

16

Shower energy (5 layers after interaction): -8GeV (normalised to number of events) (10< interaction layer <16)

BERT gives good tails. FTFB best at predicting peak?

Shower energy (5 layers after interaction): -12GeV (normalised to number of events) (10< interaction layer <16)

°C

200

400

600

800

1000

Significant difference in physics lists using LEP @ 12 GeV. QGSC gives good tail.

Shower energy (5 layers after interaction): +30GeV (normalised to number of events) (10< interaction layer <16)

400

200

%

200

All show reasonable agreement. QGS_BIC worst on the peak.

400 600 800 1000 1200 1400 1600

Transverse profiles

- Next measure transverse profiles.
- Histogram hit radius (w.r.t. shower barycentre).
- Weighted by energy; no weighting for sampling fraction.
- As before, makes sense to restrict range of interaction layers.

Transverse energy distribution: -8GeV (Normalised to number of hits) (10< interaction layer <21)

un330641 v040

Entries 330985

Mean

RMS

70

70

22.05

S 19.41

831444

21.32

19.49

80 90 100

un330641 v0406

Entries 3309857

RMS

22.05

19.41

Entries 83397

21.64

19.21

80 90 100

r / mm 10<D<21

r / mm 10<D<21

QGS models show good agreement in tail. QGSP_BERT best?

Calice Me

Transverse energy distribution: -12GeV (Normalised to number of hits) (10< interaction layer <21)

Transverse energy distribution: +30GeV (Normalised to number of hits) (10< interaction layer <21)

Suddenly LHEP shows very good agreement – better than the string models.

New Physics Lists – FTFP_BERT_TRV (yellow) c.f. FTFP_BERT (red)

Calice Meet Little difference at these energies, as expected. NIVERSITY OF 24 Using FTFP for the primary interaction in both cases

New Physics Lists - QGSP_FTFP_BERT (yellow) c.f. QGSP_BERT (red)

Different at 8 and 12 GeV – looks much like FTFP_BERT, because FTFP used for primary interaction. No change at 30 GeV. All as expected

New QGSC Lists – _BERT (yellow) _QGSC (red) _CHIPS (blue)

Calice Meet Some differences seen, e.g. in 5-layer energy, and transverse profile. Worth pursuing?

NIVERSITY OF 26

Longitudinal shower profiles

- Measure longitudinal shower profiles w.r.t. interaction point.
- Handle non-uniform sampling of ECAL by working with 1.4mm-equivalent layers of Tungsten. So, samples in the 2.4mm (4.2mm) stacks get entered twice (thrice) – with some interpolation to place energy in fictitious intermediate layers.
- Restrict interaction layer to be in first stack, so we can examine at least the first 50 1.4mm-equivalent layers of the shower (almost 1 λ_{abs}; ~20 X₀)
- Work in Progress Attempt to perform fits to these profiles, taking two or (usually) three terms of the form

$$A_i t^{\mathbb{B}_i} \exp(i_i t)$$

Calice Meeting Lyon 16/09/09

Tak Goto + DRW

27

Longitudinal profile : -8 GeV

Significant differences. QGSC_BERT comes closest to data

Longitudinal profile : -12GeV

None of the models is particularly good.

Longitudinal profile : +30 GeV

Again, none of the models is particularly good. QGSC_BERT best?

Fits to profiles

Red component can probably be largely ascribed to the photon contribution
 Blue – penetrating – pions and other MIP-like hadrons?
 Magenta? Definitely needed @ lower energies; not at 30 GeV. Nuclear fragments?

Longitudinal Shower profile composition @ 30 GeV

•Use detailed tracking in Mokka to decompose the hit energies into electrons (including δ -rays), "mesons" (π^{\pm} , K^{\pm} , μ^{\pm}), protons and others (e.g. heavier nuclear fragments)

•Electrons dominate. Mesons contribute surprisingly little. Suggests a twocomponent fit would work well at 30 GeV.

Calice Meeting Lyon 16/09/09 Tak Goto + DRW

Longitudinal Shower profile composition @ 8 GeV

Depti

Longitudinal Shower profile composition @ 12 GeV

Energy vs layer after IP

Energy vs layer after IP

Energy vs layer after IP

Energy vs layer after IP

Energy vs layer after IP

Transverse Shower profile composition @ 12 GeV

90 100

r/mm

Not much discrimination between shower components, nor between models.

Summary

- The ECAL does have significant sensitivity to hadronic models.
- Although showers not contained, it allows one to probe features of the primary interaction.
- Focussing on the intermediate energy region, (8-15 GeV) crucial for ILC jets, yet where models are uncertain.
- Main problem is too much information hard to distil clear conclusions.
- No physics list is perfect.
- Longitudinal profile shows promise as a way of partially disentangling the shower composition.
- The new list QGSC_CHIPS (in Geant4.9.3 β version) looks potentially promising, in the variables studied here.

Tak Goto + DRW

