Track Segments and Shower Substructure

Lars Weuste

Max Planck Institute for Physics

CALICE Collaboration meeting 16.09.2009

FYN 000	MC-comparison 00000	new Mokka model 000000	Conclusion	Backup
Overvi	ew			

- 1 "Follow Your Nose"
 - principle
 - λ estimation
 - MC Particle endpoint / Track endpoint comparison
- 2 Monte Carlo Data comparison
 - track length
 - track multiplicity
 - track angle
 - track gap percentage
- 3 Impact of new Mokka model
 - the new mokka model
 - track gap percentage
 - track multiplicity
 - track length
 - track angle

FYN ●○○	MC-comparison 00000	new Mokka model 000000	Conclusion	Backup
Tracking	in hadronic shov	vers		

We are using the analog HCal only, for more information see CAN-013.

2nd algorithm based on Hough Transformation also developed.

Algorithm

Find all isolated hits / layer

2 Start at innermost layer, connect hits at roughly same position in adjacent layers

We are using the analog HCal only, for more information see CAN-013.

2nd algorithm based on Hough Transformation also developed.

Algorithm

- Find all isolated hits / layer
- Start at innermost layer, connect hits at roughly same position in adjacent layers

3 Use the finished track

Definition

Probability P that no hadronic interaction takes place after distance x:

$$P(x) = e^{-\frac{x}{\lambda}} \tag{1}$$

 \Rightarrow Tracklength of tracks starting in 1st layer = # particles still active in layer x.

found tracks too short

L. Weuste (MPP)

systematic offset between track and MCParticle endpoints! \Rightarrow reconstruction of λ too small using tracking algorithm for Monte Carlo - Data comparison

- good possibility to compare different shower models (physics lists)
- but: tracks found not within shower core!
- still better than comparing rough shower profiles

used parameters

- FYN algorithm with default settings (min length: 6 layers)
- Mokka version 0608-p01
- Mokka model TBCern0707_p0709

- all to long
- QGSP_BERT and FTF_BIC almost identical
- LHEP even further away

- QGSP_BERT and FTF_BIC very close to data, LHEP has too few tracks
- QGSP_BERT and FTF_BIC almost identical

- \blacksquare for energies $> 10~{\rm GeV}$ QGSP_BERT and FTF_BIC very good
- \blacksquare LHEP close to data for \approx 10 ${\rm GeV},$ too short for higher energies

- very sensitive to right amount of noise digitization test
- in all cases too few gaps \Rightarrow missing effect in digi?
- LHEP still worse than QGSP_BERT and FTF_BIC

FYN

MC-comparison ○○○○● new Mokka model 000000 Conclusio

Backup

Monte Carlo - Data comparison: conclusion

- QGSP_BERT and FTF_BIC almost identical
- LHEP's tracks are too few and too long with too low angles
- QGSP_BERT and FTF_BIC compare well to data, except gap percentage
- gap percentage too low in simulation. Maybe missing effect in digitization?

MC-comparison 00000

Impact of the new Mokka Model

the new Mokka model

- until now: 16 mm steel absorber plates
- \blacksquare measurements: most absorber plates with pprox 17.5 mm
- $\blacksquare \Rightarrow$ change in Mokka (new version mokka-06-08-p01) and new models
- here: comparison of model TBCern0707_dchxy_01 (old absorber thickness) with TBCern0707_p0709 (new absorber thickness)
- physics list: QGSP_BERT

new Mokka model: track gap percentage

comparison

- no change expected (noise not affected by absorber)
- no change seen

L. Weuste (MPP)

tracks in hadron showers

16.07.2009 13 / 20

comparison

■ more absorber ⇒ shorter tracks ⇒ less tracks above threshold of 6 layers

L. Weuste (MPP)

comparison

geometry change \Rightarrow more scattering \Rightarrow angles get bigger

L. Weuste (MPP)

tracks in hadron showers

16.07.2009 15 / 20

comparison

■ more absorber $(4 + 16 \text{ mm} \rightarrow 4 + 17.5 \text{ mm}) \Rightarrow$ expecting $\approx 7\%$ shorter tracks

• only
$$1 - 2\%$$
 effect seen!?

L. Weuste (MPP)

tracks in hadron showers

16.07.2009

16 / 20

FYN 000	MC-comparison 00000	new Mokka model ○○○○○●	Conclusion	Backup
new Mok	ka model: c	onclusion		

- gap percentage / track multiplicity / track angle changes as expected
- but: track length decrease is too low
- \Rightarrow Needs to be studied further.

FYN 000	MC-comparison 00000	new Mokka model 000000	Conclusion	Backup
Conclusion				

Conclusion

- FYN tracking can find tracks within hadronic showers
- \blacksquare Estimation of interaction length λ not yet possible, efficiencies needed
- Still: comparision between Monte Carlo and real data possible:
 - QGSP_BERT and FTF_BIC provide results that are almost identical
 - QGSP_BERT and FTF_BIC close to real data
 - LHEP has too long tracks with too less particles
 - possible missing effect in digitzation
- new Mokka model: results from comparison not yet fully understood

FYN
MC-comparison
new Mokka model
Conclusion
Backup

Hough algorithm:
tracking parameters
Conclusion
Conclusin
Conclusion
Concl

L. Weuste (MPP)