Comparison between Fe and Tungsten HCAL

Angela Lucaci-Timoce

Introduction
HCAL Stack Simulations
Simulations with CALICE HCAL
Particle Flow Results
Conclusions

- CLIC at 3 TeV: high energetic jets, which need to be (longitudinally and laterally) contained
- Strong constraints imposed by the coil, due to costs and feasibility
- HCAL with tungsten absorber may be a solution

Material	Fe	W
λ_I [cm]	16.77	9.95
X_0 [cm]	1.76	0.35
<i>dE/dx</i> [MeV/cm]	11.4	22.1
$R_M[cm]$	1.72	0.93

- Studies done by the Linear Collider Detector project at CERN (Lucie Linssen, Christian Grefe, Peter Speckmayer et al.) and DESY HCAL group
- Questions:
 - How many interactions lengths are needed?
 - Which is the optimal sampling frequency?
 - Does Particle Flow work for a tungsten HCAL?
 - What do GEANT4 models say?

HCAL Stack Simulations

- Linear Collider Detector project at CERN group: simulation of an HCAL stack with different geometries (Fe, W, and combination of both); active part: 5 mm scintillator
- Large dimensions to guarantee shower containment: 5 \times 5 m² and 25 λ_{I}
- Simulated 100000 π^+ events between 1 GeV and 300 GeV for each geometry (should cover the energy range of events with more than 3 jets at 3 TeV)

 \Rightarrow Finer passive layers are better \Rightarrow Fe better than W • The CERN group: one point of each graph for 6, 7, 8 and 9 λ_I

 \Rightarrow For an HCAL depth of around 140 cm, W thickness of 1 cm seems optimal

 \Rightarrow this corresponds to 8 λ_l 's. Taking into account 1 λ_l for ECAL, a 7 λ_l 's HCAL seems sufficient for CLIC energies

 \Rightarrow 0 λ_I implies no active material after coil

 \Rightarrow The resolution is improved by adding a tail catcher of approx. 1 λ_l , but the effect of an even bigger tail catcher is negligible

 \Rightarrow Fe: better performance than W, but only for a significantly deeper HCAL

 \Rightarrow For a Fe+W structure (50% each), the W-Fe-scint case performs slightly better than the Fe-W-scint case (more of the electromagnetic signal reaches the active layers)

GEANT4 Issues

- GEANT4 issues discovered by the CERN group
- Visible energy in an infinite block of material for Pb and W: similar for LHEP, but very different for QGSP_BERT (edges due to model change)

 After discussion with GEANT4 people: high threshold for treating low energy neutrons (to save computing time) ⇒ better use QGSP_BERT_HP (adds high precision neutron tracking)

- Spectrum ok now, similar to the Pb case, i.e. more realistic, but much slower simulation
- Simulations with W stack redone, to check effect on resolution

GEANT4 Issues - continued

- Improved resolution!
- Explanation: slow neutrons can travel longer, and deposit energy in larger shower, with large fluctuations. Getting rid of them helps reconstruction.

- $\bullet\,$ Mokka simulations of π^- with 10, 40, 00, 150 and 300 GeV
- CALICE HCAL: 38 layers, active part is 5 mm scintillator

Fe thickness	W thickness	No. of λ_l 's
10 mm	6 mm	0.06
16 mm	10 mm	0.1
23.5 mm	14 mm	0.14

Simulations with CALICE HCAL: Energy Resolution

- 40 GeV pions: with finer sampling, W is better
- 300 Gev: Fe and W comparable

Simulations with CALICE HCAL: Lateral Containment

- 40 GeV: $R_{95\%} \approx 22$ cm for both W and Fe
- 300 GeV: 95% containment at smaller radius for Fe

Simulations with CALICE HCAL: Mean Shower Radius

- 40 GeV: smaller radius for W
- 300 GeV: smaller radius for Fe

• The Linear Collider Detector project at CERN uses **10 mm W** and the inner coil radius of the CMS \rightarrow this allows: **(10 mm W + 5 mm scintillator)** × **77 layers** \approx **8.4** λ_1

and for comparison:

(20 mm Fe + 5 mm scintillator) \times 70 layers \approx 8.9 $\lambda_{\rm I}$

- Use these configurations and run Particle Flow Algorithm (Mark Thomson)
- No tuning of the algorithm for high energy
- Example for 8 λ_1 HCAL, Fe absorber, B = 5.0 Tesla: $\sigma_E/E \approx 64\%/\sqrt{E/GeV}$
- Results consistent with the ones from Mark

 $\begin{array}{c} \sigma = 22.90 \pm 0.49 \\ \mu = 997.37 \pm 0.46 \\ \hline RMS_{90} = 0.644 \\ 1200 \\ \hline 11200 \\ \hline$

1000

E[GeV], $\cos(\theta) < 0.7$

1200

1400

ILD00, Fe, 63 lavers, LCPhys

800

100

50

600

Particle Flow Results - continued

- Jet energy resolution for W comparable with the one for Fe (at least for low energies), but
- No tuning of Particle Flow used

- Joined efforts of the Linear Collider Detector project at CERN group and CALICE AHCAL group in view of CLIC calorimetry
- From tungsten simulations:
 - 8-9 λ_I 's ECAL+HCAL sufficient up to 300 GeV
 - I0 mm W absorber optimal
 - 1 λ_I tail catcher useful
 - Used GEANT4 model important (different results for W simulations)
 - Particle Flow algorithm gives results comparable to Fe
- For future of joined effort, see talk of Christian Grefe