# AHCAL Lateral Profiles

#### Angela Lucaci-Timoce



Event Selection Geometrical Effects Results Conclusions

Overview

2

3



## **Event Selection**

- Events with showers starting in HCAL:
   N<sub>ECAL</sub> hits < 50, N<sub>HCAL</sub> hits > 150
- Data sample:  $\pi^-$  runs from CERN 2007, from 15 to 80 GeV



- Identify tracks in the shower based on TBTrack package
- Look at the distance of an AHCAL hit to the track:

$$ho = \sqrt{( extbf{X}_{ extbf{AHCAL}} - extbf{X}_{ extbf{track}})^2 + extbf{y}_{ extbf{AHCAL}} - extbf{y}_{ extbf{track}})^2}$$

- Build rings of radius 10 mm around the track
- Measure the transverse energy density, i.e. total AHCAL energy sum deposited in a given ring of radius *ρ*, divided by area of that ring
- Important: Monte Carlo samples simulated based on information from data, but MC distribution are Gaussian (which is not true for data, especially at low energies)

# **Starting Plots: 15 GeV**



Peculiar structure of the beam profile not reproduced in Monte Carlo

# **Starting Plots: 80 GeV**



Better situation at high energies

# **Geometrical Effects: Cell Area in a Ring**

- Be default, energy of an AHCAL hit deposited in the center of a cell
- To cross check the effect on the shape of the transverse profile shape: divide each cell in a 1  $\times$  1 mm<sup>2</sup> grid
- Weight the energy with the fraction of cell area in a given ring



Cell area weights: the larger the cell size, the smaller its area in a ring

## **Geometrical Effects: Ring Area in Detector**

- Large radius rings not fully included in detector
- Weight area of the ring with fraction of ring area which is contained in AHCAL



Ring area weights: important only at detector edges

#### **Geometrical Effects: Conclusions**

Transverse profile for a 40 GeV run before and after weighting



Weighting due to cell area induces a smoothening of the profile

#### **Results: Transverse Profiles**



### **Results: Fit of Transverse Profiles**



#### **Results: Data - Monte Carlo Comparison**



# **Results: Lateral Containment**









# **Results: Mean Shower Radius**





Energy weighted shower radius:

$$< R >_{event} = \sum_{i} E_{i} \cdot \rho_{i} / \sum_{i} E_{i}$$

- Results for the 18 GeV point consistent with results from CAN011c
- Note: plot is zero suppressed (differences not so large)



- Analysis of transverse development of showers induced by negative pions with energies from 15 to 80 GeV
- Geometrical effects due to particular structure of the AHCAL modules studied
- Transverse profiles for all AHCAL and layerwise presented
- Data to Monte Carlo comparison: QGSP\_BERT describes data within 20%, but...
- Energy scale difference still inside
- Most likely to change: latest developments in the electromagnetic analysis indicate a 10% shift in Monte Carlo (see talk of Sergey Morozov)