AHCAL Integration.

Status and Outlook

Mathias Reinecke for the AHCAL developers CALICE week Lyon IPNL, Sept. 16th – 18th, 2009

Outline

- Hardware Developments at DESY
 - CALIB, POWER, Flexleads
 - HBU0
 - DIF0 and DAQ interface (USB)
 - Tiles integration
- System Commissioning
- SPIROC analogue tests (see electronics session)
- The Next Generation
- Conclusions and Outlook

'old-fashioned overview' CALICE week Manchester

Flexleads – SIGNAL and POWER

- > 20 pieces of each type finished.
- > Pre-bending procedure ok.

Flexlead Pre-Bending:

Flexleads – SIGNAL and POWER

- About 80 connection cycles up to now still ok.
- Compensate HBU misalignments in distance.
- Fulfill AHCAL height requirements.
- Tests ok concerning:
 - Signal allocation
 - Signal quality
 - Resistance for power

CALIB and POWER Modules

CALIB module: 11 x 10 cm²

POWER module: 12.5 x 11 cm²

> 4 Modules of both types finished, in operation.> First tests successful.

Sizes and heights: To be adapted to ILC mechanics later.

HCAL Base Unit (HBU) setup

Mathias Reinecke | CALICE week Lyon | Sept. 16th - 18th, 2009 | Page 6

Reflector Foil Assembly

Reflector Foil Assembly

Mathias Reinecke | CALICE week Lyon | Sept. 16th - 18th, 2009 | Page 8

Tile Assembly (the first 18)

Tile Map

Module HBU0_II

Allowed and the sections

-	-				Pos.	Tile –	Pos.	Tile –	Pos.	Tile –	Pos.	Tile –	
II_6	II_5	II_4	II_3	II_2		Bias [V]		Bias [V]		Bias [V]		BiasV [V]	
1				er and Re	I_1		II_1		III_1	26 - 33.5	IV_1	152 – 33.1	
1.1		-00			I_2		II_2		Ш_2	33 - 33.3	IV_2	14 - 33.0	
II_12	II_11	II_10	11_9	11 8	I_3		II_3		Ш_3	41 – 33.3	IV_3	55 - 32.8	
	e 🔛 🖗	\$ <u></u> =0			I_4		II_4		III_4	43 - 33.6	IV_4	42 - 33.0	
-	fitti i Tani i	ata ta		SAVARIAL	I_5		II_5		III_5	50-33.4	IV_5	46 – 32.7	Each auadrant can
II 18	II 17	II 16	II 15	II 14	<u>I_6</u>		II_6		III_6	81 - 34.0	IV_6	24 - 32.5	Lach quadrant can
					<u>I_7</u>		II_7		III_7	90 - 33.9	IV_7	326 - 33.5	
		Ω			<u>I_8</u>		II_8		III_8	95 - 33.5	IV_8	88 - 31.9	cnoose detween
II 24	23	22	II 21	11 20	<u>I_9</u>		II_9		Ш_9	98 - 33.9	IV_9	89 - 33.3	
- 1	8 - E - Mars			185 200	<u>I_10</u>		II_10		III_10	272 - 33.5	IV_10	248 - 33.0	3 SiPM bias voltage
			1. Ph	ENRE -	<u>I_11</u>		II_11		III_11	133 - 33.8	IV_11	320 - 34.0	o on w blas voltage.
11 20	11 20	11 28	11 27	11 26	I_12		II_12		III_12	138 - 33.3	IV_12	314 - 32.2	
11_30	11_23	11_20	11-21	11_20	<u>I_13</u>		II_13		Ш_13	147 – 33.8	IV_13	312 - 33.3	
		F.			<u>I_14</u>		II_14		III_14	157 - 33.7	IV_14	188 - 33.2	-
					<u>I_15</u>		II_15		III_15	166 - 33.5	IV_15	193 – 32.8	
II_36	11_35	11_34	II_33	II_32	<u>I_16</u>		II_16		Ш_16	167 – 33.5	IV_16	235 - 33.6	
	1	1 19			<u>I_17</u>		II_17		<u>III_17</u>	168 - 33.9	IV_17	200 - 34.1	
چر ا د س ر د		.			<u>I_18</u>		II_18		III_18	173 – 33.6	IV_18	206 - 33.8	
IV 1	IV_2	IV_3	IV_4	4 IV_5	<u>I_19</u>		II_19		<u>III_19</u>	178 – 33.7	IV_19	205 - 32.6	
101 -					<u>I_20</u>		II_20		Ш_20	184 - 33.8	IV_20	207 - 33.1	
				• 1	<u>I_21</u>		II_21		III_21	249 - 33.8	IV_21	221 - 32.4	
IV 7	IV 8	IV 9	IV 10	IV 11	<u>I_22</u>		II_22		III_22	186 - 33.5	IV_22	225 - 32.7	
					<u>I_23</u>		II_23		III_23	252 - 33.7	IV_23	242 - 33.2	
	ar " Pratie				<u>I_24</u>		II_24		Ш_24	264 - 33.6	IV_24	258 - 33.0	
114 40				101 4 7	1_25		II_25		Ш_25	241 - 33.6	IV_25	265 - 32.9	-
IV_13	IV_14	IV_15	IV_16	IV_1/	<u>I_26</u>		II_26		<u>III_26</u>	213 - 33.6	IV_26	305 - 32.3	
			LaP a		<u>I_27</u>		II_27		<u>III_27</u>	227 - 33.7	IV_27	277 – 33.1	
	in the second	ē. 192		11.2 19.00	I_28		II_28		III_28	185 - 34.0	IV_28	267 – 32.9	
V_19	IV_20	IV_21	IV 22	IV_23	<u>I I_29</u>		II_29		Ш_29	240 - 33.4	IV_29	313 – 33.1	-
ू हे कि		Se [<u>I_30</u>		II_30		III_30	208 - 34.0	IV_30	164 – 33.3	
		10 Res	1011	5 B.S. 1	<u>I_31</u>		II_31		III_31	196 - 33.2	IV_31	306 - 33.1	
IV 25	IV 26	IV 27	IV 28	IV 29	<u>I_32</u>		II_32		III_32	201 - 33.2	IV_32	307 - 33.1	
-20			10_20		<u>I_33</u>		II_33		III_33	194 – 33.3	IV_33	308 - 33.3	
			mini	T -	<u>I_34</u>		II_34		<u>III_34</u>	87 - 33.3	IV_34	311 - 32.8	
	1) 11 11	THE PROPERTY IN			<u>I_35</u>		II_35		III_35	125 - 33.3	IV_35	315 - 33.0	
	IV 32	IV 33	11/ 34	IV 35	III 36	1	⊢ IT_36	1	⊥⊞ 36	+181 - 333	1 IV 36	$\pm 325 - 32.6$	1

mechanics tiles (tile with drilling for cassette cont

long tail response (SL, XL, XXL)

highest / smallest bias voltage in quadrant

Mathias Reinecke | CALICE week Lyon | Sept. 16th - 18th, 2009 | Page 10

Commissioning – Signal Chain for LED operation

Concept : December 2007

Commissioning (status last Friday)

SPIROC2 output: LEDs firing, 3 events (triggers), 18 tiles assembled

The Next Generation

The Next Generation

The Next Generation

Ideas from November 2008 (ITEP)

EUDET Tiles

12 tiles of new generation arrived from ITEP

EUDET Tiles

Tile	h	y	X	y2*	y1*	x1	xa	xa-xk	d2	d1
nominal	3.0	30.0	30.0	22.50	11.50	22.50	16.25	2.50	2.50	2.50
dimension										
1004	3.05	30.043	29.927	22.495	11.492	22.420	16.251	2.554	2.514	2.511
1005	3.0	29.901	29.912	22.399	11.405	22.440	16.339	2.545	2.513	2.506
1006	3.0	29.977	29.971	22.418	11.417	22.449	16.394	2.550	2.519	2.510
1007	3.05	29.980	29.864	22.447	11.446	22.375	16.354	2.581	2.516	2.509
1008	3.0	29.982	30.001	22.479	11.482	22.468	16.500	2.523	2.516	2.504
1009	3.05	30.016	29.914	22.464	11.462	22.446	16.229	2.502	2.518	2.512
1010	3.05	29.965	29.904	22.436	11.437	22.437	16.393	2.563	2.514	2.509
1011	3.10	29.907	29.940	22.423	11.423	22.434	16.373	2.483	2.517	2.512
1012	3.05	29.924	29.993	22.409	11.412	22.452	16.396	2.580	2.518	2.510
1013	3.10	29.879	29.781	22.398	11.400	22.405	16.310	2.539	2.510	2.508
1014	could not be measured, dimensions far off									
1015	3.00	29.898	29.934	22.402	11.402	22.431	16.457	2.546	2.487	2.503

*initial plan was y1=7.5mm, y2=18.5mm

Measured by DESY group ZM31

Mathias Reinecke | CAL

EUDET Tiles

UV LED (~10ns pulse width) measurements:

Tile number	Saturation [pixels]			
1004	960			
1005	997			
1006	952			
1007	945			
1008	900			
1009	957			
1010	962			
1011	1206			
1012	892			
1013	952			
1014	1232			
1015	1000			

WLS fibre: ~25ns time constant

SiPMs : 756 pixels (CPTA) ? Size : 1mm² ?? SiPM recovery time < 25ns ? Quenching resistor, -variations?

Saturation values ok ? Variations due to fibre alignment? No. of Pixels ok for physics?

> Measured by Erika Garutti and Adel Terkulov

Conclusions and Outlook

- > AHCAL prototype delivers first test-data from LED system.
- > British DAQ (hardware, DIF firmware) still has to be implemented.
- > AHCAL prototype is prepared for DESY testbeam (USB based).
- Labview GUI has to be extended for testbeam (=> Sandra Christen).
- Redesign concepts of AHCAL modules are prepared now.
- > EUDET Tiles : Status ok (input from ITEP to our comments?)?
- > A lot of system's and SPIROC analogue and digital tests ahead.

