

Performance of SPIROC chips in SKIROC mode

Michele Faucci Giannelli, Jérémy Rouene, Vincent Vandenbussche

Outline

- Test bench description
- Tests on two SPIROC2 chips:
 - ADC Gaussian response
 - ADC linearity and stability tests
 - Bond gap measurement and correction
 - Noise level and stability
- Tests on SPIROC1 chips:
 - Preamplifier linearity
 - Fast shaper linearity
- Conclusions

Test bench setup

Power pulse generator

Voltmeters

Power supply

Test board with SPIROC2 chip

Laptop with LabView

Test bench setup

ADC test

This scheme is repeated for 16 channels

Gaussian form

- Generator from 1.2V to 2.4V with 0.2V steps
- 32000 entries per step per channel

The response is not perfectly Gaussian (χ^2 /ndf = 200/6) due to a small asymmetry

Linearity test

- Generator parameters:
 - from 1.2V to 2.5V
 - $-250 \mu V steps$
- 10 runs per step
- 16 measurement (depth of memory) per run
- All 36 channels received the same input
- Long time measurement
 - may be affected by instability of the chip
- Automated routine
- Analysis in ROOT

Result and fit

All 36 channels are plotted and fitted

Residuals and RMS

No major problems
Some instabilities in the residuals
Range +-1 ADC counts

RMS

Spikes are due to known issues with the acquisition (see later)

Problem not present when using faster computer.

Comparison of 3 voltages

1.70V 1.95V 2.45V

The shift between channels is constant as function of the voltage

The RMS are not correlated in the same channel at different voltages

Stability measurement

- Preliminary 50h measurement without control on band gap
- Then a 20h measurement
 - two voltages
 - Monitored both the generator voltages and the band gap value
- Measured performed during weekend (no people in the room) and with air conditioning to stabilize the temperature
- Band gap correlated with ADC output in order to characterize its effect

Stability

Problem with band gap caused an drift of 8 ADC counts

Once the band gap was fixed the drift was reduced to 3 ADC counts in 20 hours

Periodicity observed in both ADC and generator output, maybe due to air conditioning turning on and off

Band gap correlation

Band gap correlated with ADC output
The points were fitted with a linear function to
correct the linearity measurement

Corrected linearity

- Correcting the points using the BG information and the function obtained before
- The residual reduced from ±1 to ±0.5 ADC counts

Non corrected Band gap corrected

Noise measurement

- Electronics in front of ADC is activated and ADC output measured
- Similar to noise measurement

Noise level

Similar level of noise in the two chips

No correlation between the two chips, hence the noise is not correlated to the chip design

Noise level

Measurements on SPIROC1

- Simpler setup than before
 - no automated measurement
- Signal injected manually varying input charge or internal gain
- On SPIROC1 it is possible to probe internal points in the chip
 - the signal after each component is measured at the oscilloscope
- Study of pre-amplifier, fast shaper and slow shaper
 - raise time, length, value of maximum
 - focus on fast shaper

Linearity of fast shaper

- Gain is fixed (200fF)
- Value and time of maximum of the output from FS as function of injected charge

The FS is linear up to 100 fC
The time response is logarithmic for a larger range

Fast shaper

- Now fixed charge (100fC)
- Same measurements changing internal gain

Expected 1/gain behavior in both for both maximum and the time at which it is reached

Conclusion and outlook

- Important experience for future performance studies
- ADC is working correctly once connected to fast pc and BG is monitored
 - Need to test in power pulsing mode
- Band gap need to be stabilised
- The full acquisition with SPIROC2 chip still need some debugging
 - difficult due to lack of internal probe
- More test will be performed on analog part of the chip to fully characterise all components

Backup Slides

Gaussianess of signal

- When changing voltage, a small tail appears
 - Larger for channels with higher mean
 - Identical for both channels!!!
 - Not at all voltages