High speed pipelined ADC + Multiplexer for CALICE

bentur Netzbal in Periodi Notičase st de Periodus des Particulas

Why this high speed (25MS/s)

- Because pipeline is not power efficient below 10MHz.
- For a good FOM, the converter must be used at high frequency affordable by the process.

10 bits Pipelined ADC performance trends

Process matching is basically limiting

The **faster** design is the more **power efficient**

	Feature	Year	Speed	Power	Supply	FOM3=Power/Speed
	Size [µm]		[MS/s]	[mW]	[V]	[mW/MS/s]
	0.8	1995	40	85	2.7	2.1
	0.8	1999	40	119	3.3	3
	0.8	1998	20	28	2.4	1.4
	0.6	1998	14.3	36	1.5	2.5
	0.6	1996	40	28	5	0.7
	0.5	2001	200	280	3	1.4
	(0.35		40	55		
			100	105		
	0.35	1999	100	93	2	8.9
	035	2300	10			
	0.3	2002	30	16	2	0.5
	0.25	2000	20	43	1.4	2.2
	0.25	1999	45	25	1.5	0.6
	0.18	2001	80	80	1.8	1.0
	0.18	2003	100	69	1.8	0.7
	0.18	2003	150	100	1.8	0.7
	0.12	2002	100	120	1.2	1.2

Slow versus fast digitizer for CALICE

Fatah Rarbi - Daniel Dzahini - IEEE Dresden 2008

12 bits ADC; 25 MS/s; 35mW; and 2VPP range in 3.5V supply

12bits ADC=2.5 bits + 1.5 bits +....+ 1.5 bits + 3 bits

MDAC 2.5 bit + DEM: Architecture

$$V_s = 4 \times V_{in} - 3 \times \mu V_{ref}$$

DEM impact on distortion = harmonics transfert into noise

Multiplexer simulation results

utput multiplexer signal linearity

Output multiplexer low signal line

The layout is very challenging for the DEM

Ultimate prototype of our ADC, including: the DEM stage and the Multiplexer

Conclusion 1: power efficiency

- 1. A DEM archictecture is design to improve the SFDR and INL
- 2. A digital correction algorithm was successfully tested, and will be published
- A critical point is the MUX => simulations for 16 channels but testing will be a more strong argument.

1. DO WE REALLY NEED A 12 BITS CONVERTER ?? WATCH THE SNR IN THE FRONT-END STAGES