

JOINT GDE, ILC-HIGRADE AND JINR CFS Meeting

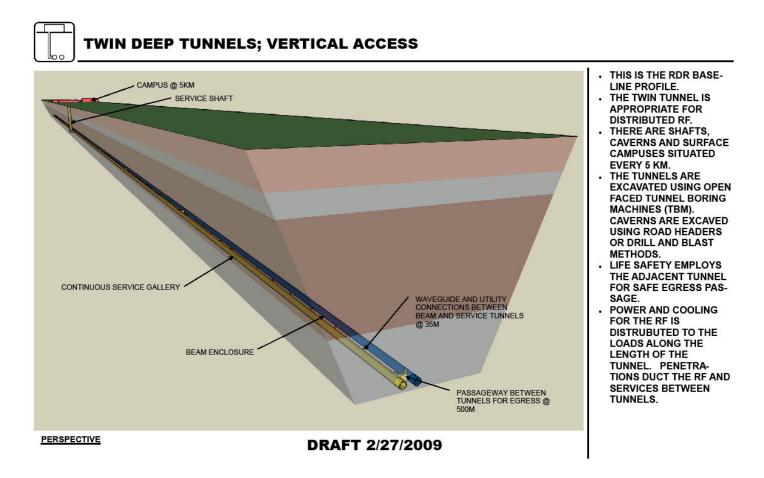
CONVENTIONAL FACILITIES AND SITING GROUP

OVERVIEW OF CFS TUNNEL CONFIGURATION STUDY AND OPPORTUNITIES FOR JINR/GSPI PARTICIPATION

V. Kuchler

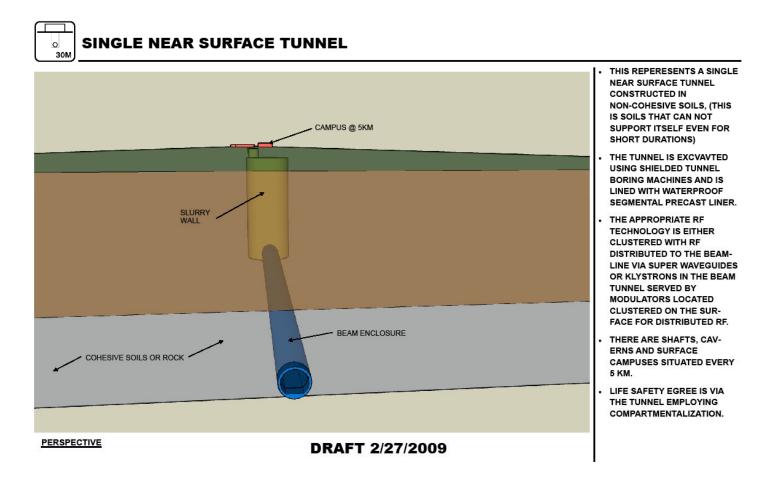
Joint GDE, ILC-Hi-Grade and JINR CFS Meeting at DESY - June 25-26, 2009

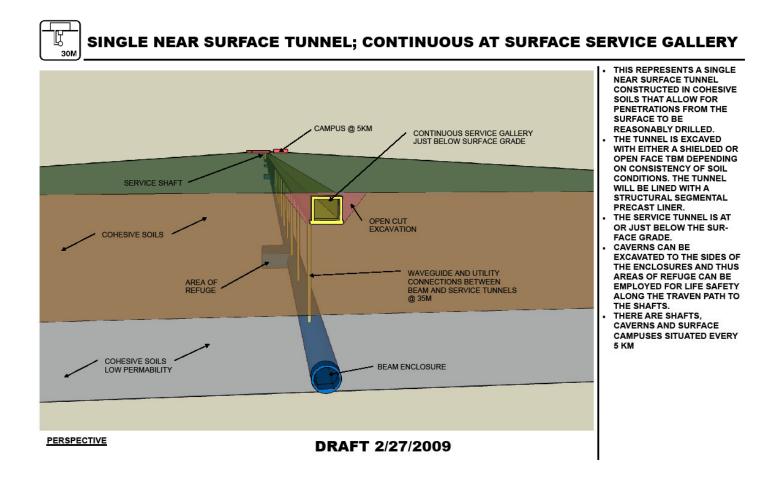
Outline

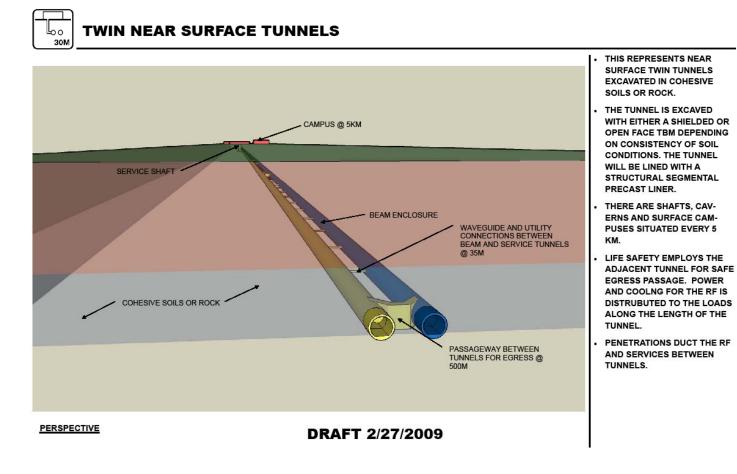

- Overview of the Current CFS Tunnel
 Configuration Effort
- Expectations for the Review of the GSPI Soil Boring Report for the Dubna ILC Site
- Suggestions for JINR/GSPI Participation and Contribution to the CFS Tunnel Configuration Effort
- Discussion Topics for Continued JINR/GSPI
 Participation in ILC CFS Effort
- Closing Remarks

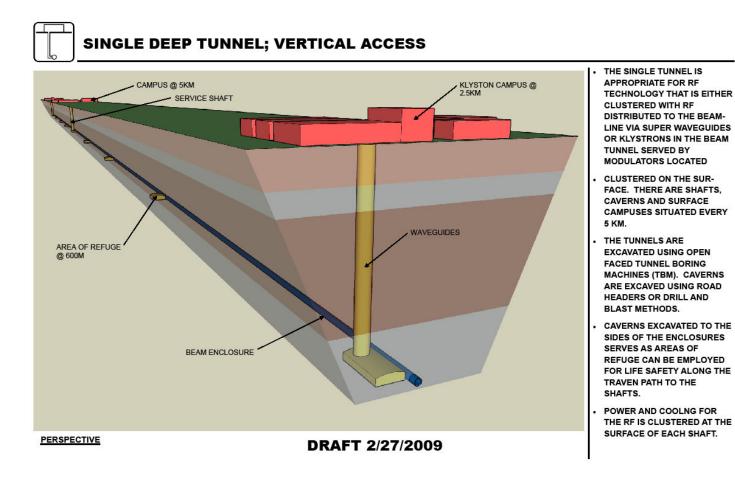
Global Design Effort - CFS

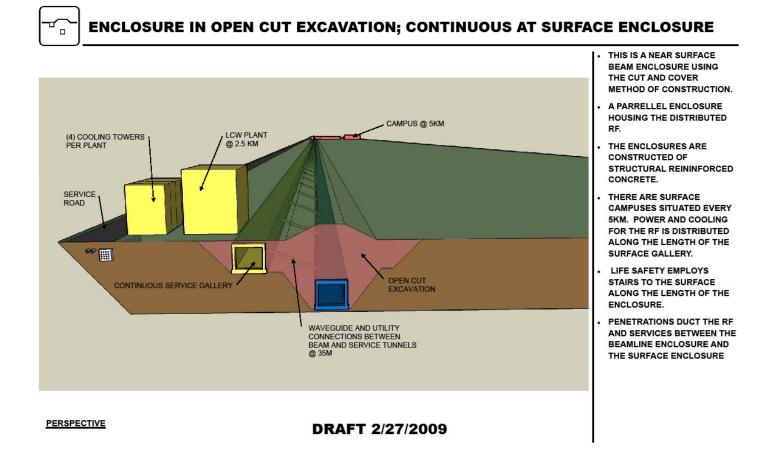
CFS Tunnel Configuration Study


- The ILC RDR Preparation Included Five Siting Areas
 - Asian Sample Site Twin Tunnel Deep
 - American Sample Site Twin Tunnel Deep
 - European Sample Site Twin Tunnel Deep
 - DESY Site Shallow Bored Single Tunnel
 - Dubna Site Shallow Bored Tunnel with Surface Level Gallery
- Surface Level and Cut and Cover Solutions were also Considered but Not Developed to the Same Level of Detail
- In Addition the Experience of Similar Projects Could also be Investigated
 - XFEL Shallow Bored Single Tunnel
 - **Project X** Cut and Cover Tunnel with Surface Gallery
- As Part of the Value Engineering Phase, a Comprehensive Review of all Reasonable Enclosure Combinations was Considered Appropriate

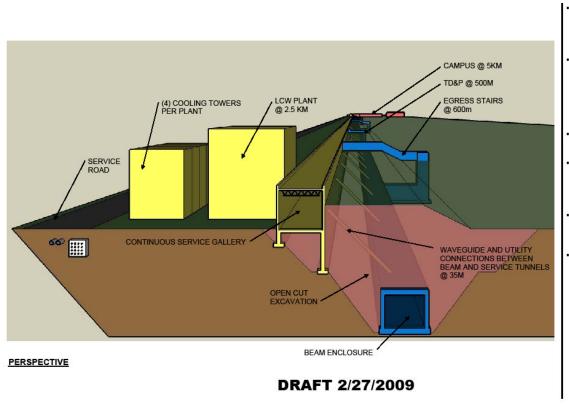



06-25-09





7



ENCLOSURE IN OPEN CUT EXCAVATION; CONTINUOUS SERVICE GALLERY

- THIS IS A NEAR SURFACE BEAM ENCLOSURE USING THE CUT AND COVER METHOD OF CONSTRUCTION.
- A PARRELLEL SURFACE GALLEY HOUSES THE DISTRIBUTED RF. THE ENCLOSURE IS CON-STRUCTED OF STRUCTURAL REINFORCED CONCRETE.
- THERE ARE SURFACE CAM-PUSES SITUATED EVERY 5KM.
- POWER AND COOLING FOR THE RF IS DISTRIBUTED ALONG THE LENGTH OF THHE SURFACE GALLERY.
- LIFE SAFED EMPLOYS STAIRS TO THE SURFACE ALONG THE LENGTH OF THE ENCLOSURE.
- PENETRATIONS DUCT THE RF AND SERVICES BETWEEN THE BEAMLINE ENCLOSURE AND THE SURFACE GALLERY

Tunnel Configuration Comparison Matrix

				ЗОМ			
	DE Twin Deep Tunnels	EP Single Deep Tunnel	Twin Near Surface Tunnels	Near Surface Tunnel, at Surface Gallery	NEAR SURFACE Single near Surface Tunnel	Enclosure in Open Cut, Cont. Gallery	Enclosure & Cont. Gallery in Open Cut
EXCAVATION	TBM	TBM	твм	TBM & OPEN CUT	TBM	OPEN CUT	OPEN CUT
No of TUNNELS	TWO-TUNNEL	ONE-TUNNEL	TWO-TUNNEL	TWO-TUNNELS	ONE-TUNNEL	ONE-TUNNEL	TWO-TUNNELS
SHAFT SOIL	VARIES	VARIES	VARIES	VARIES	SOFT / SLURRY	NA	NA
TUNNEL SOIL	ROCK	ROCK	COHESIVE SOIL or ROCK	COHESIVE SOIL -Low permeability	Saturated Sand & Gravel	SOILS VARIES	SOILS VARIES
SERVICE SPACE	SECOND TUNNEL	SURFACE BUILDINGS	SECOND TUNNEL	CONTINOUS SERVICE GALLERY	AT CAMPUSES	CONTINOUS SERVICE GALLERY	CONTINOUS SERVICE GALLERY
ILC Technology	DISTRIBUED RF	CLUSTERED RF	DISTRIBUED RF	DISTRIBUED RF	CLUSTERED RF	DISTRIBUED RF	DISTRIBUED RF
SIMILAR TO	RDR Sample Sites	RDR & CLIC	RDR	Dubna ILC	XFEL	Project X	Project X
ACCESS	Vertical Shaft	Vertical Shaft	Vertical Shaft	Vertical Shaft	Vertical Shaft	Hatch	Hatch

Suggestions for Report Discussion

- Content of Report
 - Soil Boring Logs
 - Type of Soil Encountered and Comparison to Other Site
 Investigations
 - Is There Constructability Analysis or Suggested Preliminary Design Criteria ?
- Role of JINR/GSPI in Tunnel Configuration Study
 - Preliminary Design for Dubna Site Solution
 - Unit Cost Values for Underground Construction
 - Value Engineering for Dubna Site Design
 - Contribution of Design Data for the Shallow Bored Dubna Site Solution

Continued JINR/GSPI and ILC CFS Efforts

- How Can the JINR/GSPI Efforts be Sustained Over Time into Preliminary Design and Detailed Cost Estimation Efforts Through the TDR Phase
- Unit cost Development for the Dubna Site Design Should be Consistent with the Unit Costs Developed for the RDR Sample Sites and the DESY Site
- Exiting Strategies and Life Safety Aspects for the Dubna Site Solution Can be Included into the Comprehensive Life Safety Document Currently Being Developed by the CFS Group
- Participation in the Accelerator Design and Integration Effort Would also be an Important Consideration for the Dubna Site Solution
- Development of Criteria for Process Water Cooling, HVAC and Electrical Distribution is also Important to Fully Understand the Dubna Site Solution
- Can We Establish Consistent Participation in On-going CFS Meetings

Concluding Remarks

- We Continue to Regard the JINR/GSPI Participation as an Important Part of the ILC CFS Effort
- Funding is a Difficult Aspect of the Work in All Regions
- We Need to Establish Realistic Expectations for JINR/GSPI Participation in CFS Efforts
- The Next ILC/GDE Meeting will be in Albuquerque In September, 2009 and Planning is Needed to Present a Complete ILC CFS Progress Report
- We Welcome the Forthcoming Discussions