Tungsten as HCal-material for a LC at multi-TeV energies

CALICE AHCAL Meeting, DESY 17 July 2009

Christian Grefe

for the Linear Collider Detector Group @ CERN

- Hcal with tungsten: simulation studies @ CERN
- Tungsten as HCal material
- Plans for a tungsten HCal prototype

- CLIC @ 3TeV
- Shorter Longitudinal Shower Size
 - High energetic jets require more HCal material in terms of interaction lengths

 to achieve better containment
 - Strong constraints by coil cost and feasibility
- Smaller Lateral Shower Size
 - High energetic jets are more boosted
 - PFA performance is decreasing
- Tungsten might solve both problems

Tungsten HCal Simulations

17 July 2009, Christian Grefe

- Investigate what modifications are needed for the ILC-detector concepts in a CLIC-scenario
- For calorimeters this means calorimetric performance and in particular PFA performance
- Questions to answer:
 - How many interaction lengths do we need?
 - Which sampling frequency is optimal?
 - Full detector and PFA studies (to be done)
 - Readout cell sizes?
 - Change magnetic field?
 - Change aspect ratio of the detector?

- Many different HCal-geometries with tungsten, steel and a combination of both, without changing the active parts (5.0 mm Scint + 2.5 mm G10)
- Dimensions: 5x5m and more than 25 λ in depths to guarantee shower containment
- Simulated 100k $\pi^{\scriptscriptstyle +}$ between 1 GeV and 300 GeV for each geometry
 - This should cover the energy range of jet main constituents of events with #jets ≥ 4 @ 3 TeV
- Defined active and dead layers corresponding to different HCal, coil and tailcatcher sizes
- Defined simple shower variables: width, length, center, energy density, etc.
- Used a neural network (TMVA) to reconstruct the π^+ energy

• "extremely deep"-HCal performance

- Linearity is better than 2% (not shown)
- "extremely deep"-case:
 - Finer passive layers are better
 - Steel performs better than tungsten

• Performance vs HCal depth (tungsten)

The 4 points of each graph correspond to 6, 7, 8 and 9 λ

- For an HCal depth of around ~ 140 cm an absorber thickness of ~ 1 cm tungsten seems optimal
- This corresponds to ~ 8 λ; taking into account 1 λ of ECal, a 7 λ HCal appears to be sufficient for CLIC energies
- Stay away from the steep areas where leakage becomes the dominating factor

CLIC-PH-Note, Speckmayer & Grefe (in preparation)

Performance vs HCal depth (tungsten vs steel)

- Steel yields a better performance than tungsten, but only for a significantly deeper HCal
- For a tungsten-steel sandwich structure (50% thickness each), the W-Fe-Scint case performs slightly better than the Fe-W-Scint case, because more of the electromagnetic signal reaches the active layers

• Impact of a Tailcatcher

- 0 λ implies no active material after the coil
- While the resolution is improved by adding a tailcatcher of ~1 λ the effect of an even bigger tailcatcher is negligible

HCal Barrel Dimensions

	ILD-f	lavor	SiD-flavor		
calculated for 18 fold symmetry	10mm W	20 mm Fe	10 mm W	20 mm Fe	
layers	70	60	70	60	
R _{min} [cm]	200	200	141	141	
R _{max} [cm]	320	370	270	310	
Length [cm]	540	540	364	364	
weight [t]	1200	930	650	500	
Channels (1cm x 1cm)	3.4*10 ⁶	3.2*10 ⁶	1.8*10 ⁶	1.7*10 ⁶	
Channels (3cm x 3cm)	3.8*10 ⁵	3.5*10⁵	2.0*10 ⁵	1.9*10 ⁵	
λ	7.6	7.6	7.7	7.7	
X ₀	200	70	200	70	

17 July 2009, Christian Grefe

Properties of Tungsten

17 July 2009, Christian Grefe

- $\rho = 19.3 \text{ g/cm}^3$
- $\lambda = 9.94 \text{ cm}, X_0 = 0.35 \text{ cm}$
- brittle and hard to machine

- Tungsten alloys with W > 90% + Cu / Ni / Fe
 - $\rho = 17 19 \text{ g/cm}^3$
 - $\lambda \approx 10 \text{ cm}, X_0 \approx 0.4 \text{ cm}$
 - Well established production procedure
 - Easy to machine
 - Price ~ 70 Euro/kg (without machining)

- Tungsten is usually used in alloys for better mechanical properties and machinability
- Several ferromagnetic (W,Ni,Fe) or paramagnetic (W,Ni,Cu) alloys are available

Werkstoff	Abkürzung	Chemische Zusa	mmensetzung [%]	Nominelle Dichte	AMS-T-21014			
Material	Abbreviation	Chemical composition [%]		Nominal density	Class			
		W	Rest					
Schwach ferromagnetisch / Weakly ferromagnetic								
DENSIMET® 170	D170	90,5	Ni, Fe	17,0	1			
DENSIMET® 176 / W	D176 / DW	92,5	Ni,Fe	17,6	2			
DENSIMET® 180	D180	95	Ni, Fe	18,0	3			
DENSIMET® 185	D185	97	Ni, Fe	18,5	4			
DENSIMET® 188	D188	98,5	Ni, Fe	18,8	-			
DENSIMET® D2M	D2M	90	Ni, Mo, Fe	17,2	-			
Paramagnetisch / Paramagnetic								
INERMET® 170	IT170	90,2	Ni, Cu	17,0	1			
INERMET® 176	IT176	92,5	Ni, Cu	17,6	2			
INERMET® 180	IT180	95	Ni, Cu	18,0	3			

www.plansee.at

	D170	IT170	D176/W	IT176	D180	IT180	D185
Elastizitätsmodul E [GPa] Youngʻs modulus E [GPa]	340	330	360	350	380	360	385
Schubmodul G [GPa] Modulus of rigidity G [GPa]	140	125	145	135	150	140	160

www.plansee.at

17 July 2009, Christian Grefe

	D170	IT170	D176/W	IT176	D180	IT180	D185
Elastizitätsmodul E [GPa] Youngʻs modulus E [GPa]	340	330	360	350	380	360	385
Schubmodul G [GPa] Modulus of rigidity G [GPa]	140	125	145	135	150	1 40	160

17 July 2009, Christian Grefe

- Starting from powder, the metal mixture is first pressed and then scintered and finally machined
- Each production step increases the density
- The main limitations are:
 - Plate size limited by the size of the oven
 - Thin plates it has to be somehow stable after pressing
 - todays limitations are around 10 x 500 x 800 mm³
- We are in contact with Industry to address these issues

17 July 2009, Christian Grefe

Tungsten HCal Prototype

17 July 2009, Christian Grefe

- Physics performance:
 - Verify GEANT4 simulations (resolution, etc.)
 - Include noise terms do slow neutrons spoil the signal?
 - Test PFA performance
- Tungsten plate production process:
 - Production of large and thin plates
 - Quality of machining? Flatness of plates?
- Mechanical questions:
 - Test assembly in view of a full HCal segment

- If possible use existing CALICE active modules
 - Test Scintillator and RPC together with tungsten
- Start with a smaller prototype (less than 1x1 m² plate-size)
- Fill up unused space with Steel plates to have a veto signal and use only fully contained showers

- If possible use existing CALICE active modules
 - Test Scintillator and RPC together with tungsten
- Start with a smaller prototype (less than 1x1 m² plate-size)

- Cutting on the shower size biases the physics:
- Small showers means high electromagnetic fraction, but we want to investigate hadronic performance!
- Getting the lateral size right is more important than getting the depth right
 - Can select by first interaction without bias on the hadronic part of the shower
 - Easy to add more layers
- Need to understand correlation of shower content and shower size
 - \rightarrow ongoing studies
- Some rough numbers:
 - Minimum plate size seems to be 50x50 cm² (low energy tests)
 - Minimum length ~50 cm

Conclusion

17 July 2009, Christian Grefe

- Simulations with tungsten
 - 8 9 λ total (ECal + HCal) seem to be sufficient for π^+ up to 300 GeV
 - For the given HCal dimensions an ~10mm W-absorber seems optimal
 - 1 λ Tailcatcher is useful
 - Estimations based on "conventional" calorimetry and leakage
 - Need to verify with PFA performance
- Production of the tungsten plates seems possible
- Tungsten HCal prototype
 - If we seriously want to investigate a tungsten HCal option a prototype is necessary
 - Possible extension for CALICE-program
 - Strong interest from CERN We need your help!