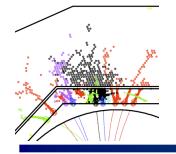
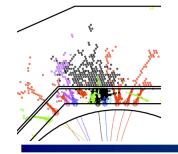

Future test beam options


CALICE AHCAL main meeting

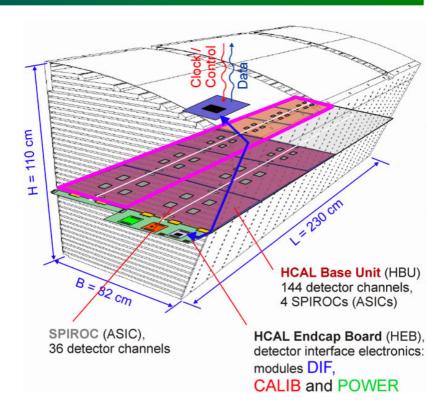
DESY, June 16, 2009

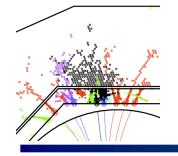
Felix Sefkow



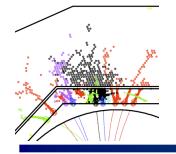
Outline

- Goals of a second generation AHCAL
- Prototype roadmap
- Integrated beam tests



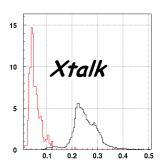

Technical prototype

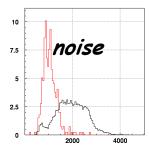
- Towards a scalable and compact detector
 - Realistic proposal: costing
- Embedded front end ASICS
- Mechanical structure with minimum dead space
- Options for scintillator and photo-sensor integration
- Technical challenge:
 - Stability with power pulsing and online zero suppression

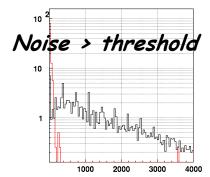


Physics with 2nd generation PT

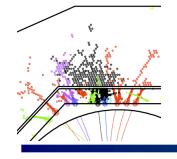
- Validation of shower models for a scintillator steel HCAL will be based on the physics prototype and its ever improving detector understanding
- What will the new prototype add?
- 1. Time measurement
 - Tagging of delayed neutrons → triple readout
 - Validation of simulation and exploitation for particle flow
 - Needs to be modelled with actual electronics performance for different coupling schemes (WLS fibre or direct)
- 2. Larger acceptance with fine granularity
 - PFLOW studies with multi-particle events
 - Potential of an integrated test with tracking being under study
- 3. Stainless steel: can measure showers in magnetic filed



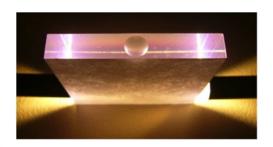

New tiles and SiPMs

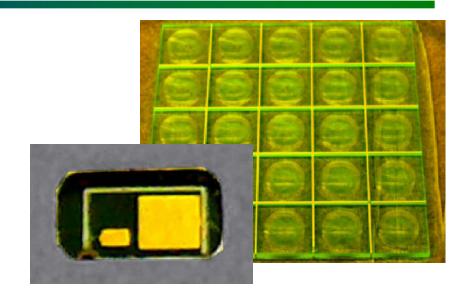

- First 144 tiles from ITEP
 - Larger set underway for 2m layer
- SiPMs (MRS-APDs) from CPTA

Improved properties w.r.t. PPT SiPMs

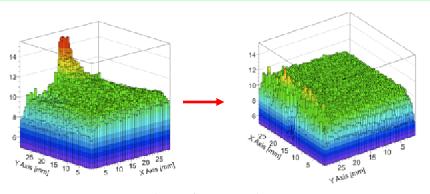


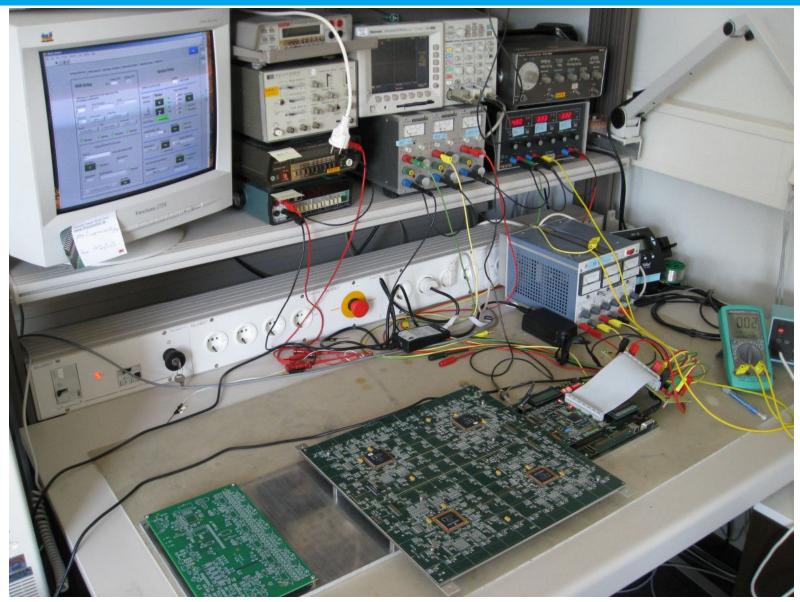
Future test beam


ITEP

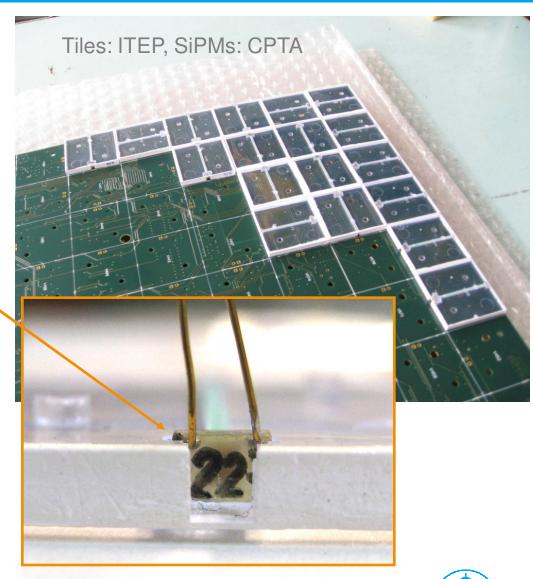

Calorimeter for IL

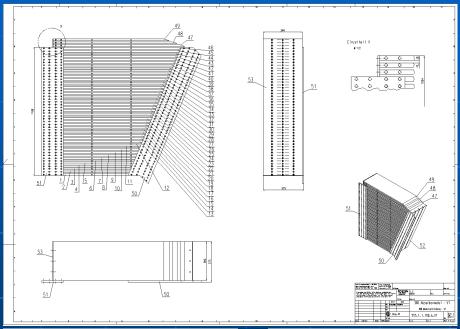
Other coupling schemes

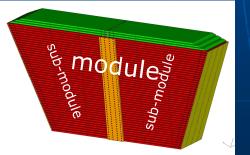

- Surface-mounted MPPCs
- Scintillator cells with dimple to compensate non-uniformity
 - See NIM paper by NIU group
- Strips a la Sci ECAL
 - PFLOW study ongoing
- New idea from MPI group
 - Dimple for direct coupling from the side


Future test beam

We have > 800 MPPCs of SciECAL type


Prototype System Commissioning




Tiles Interconnection Test

- Tiles not connected yet (HBU electrical test first).
- Test assembly shows:
 - Strong force to SiPM pins during assembly.
 - A few SiPMs cases are too large (only a few!).
 - Mirrors are too large, but can be cut.
 - Alignment concept (-pins) works!!

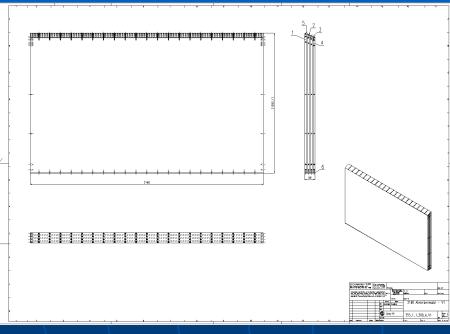
real size test setup vertical

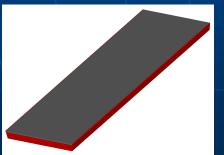
2 short length (360 mm) absorber supmodules mounted to a short length module

- delivery tolerances flatness, thickness
- machining

tendering, processing, handling, tolerances, costs

- sub-module mounting
 - stacking and shape tolerances, module interconnection, stability
- sensitive layer installation

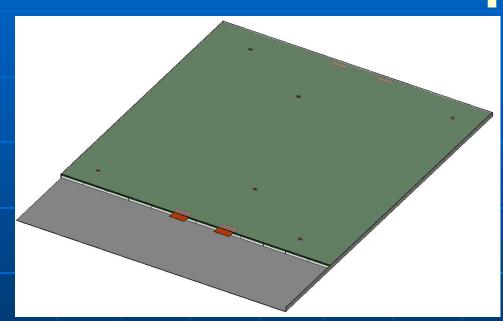

handling, tolerances, vertical and horizontal layer connection, cabling and cooling routing


360 mm sub-module Nr.1

sub-module plates

- flatness measured from 4 raw plates 3000 mm x 1500 mm Order 2 batch 1 (not roller leveled)
- order 2 batch 1 water cut to individual size
- flatness measured for each plate
- machining started -> finish first week of July
- Sub-module Nr.1 mounting finish end of July
- First week of August start production of submodule Nr.2 -> finish beginning of September

real size test setup horizontal

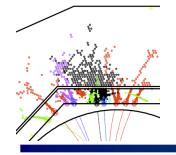

4 full length (2160 mm) absorber plates mounted to a fraction of a sub-module (far outer position)

- delivery tolerances flatness, thickness
- machining tendering, processing, handling, tolerances, costs
- sub-module mounting stacking and shape tolerances, module interconnection, stability
- sensitive layer installation
 handling, tolerances, vertical and horizontal layer connection, cabling and cooling routing

2160 mm sub-module plates 43 to 46

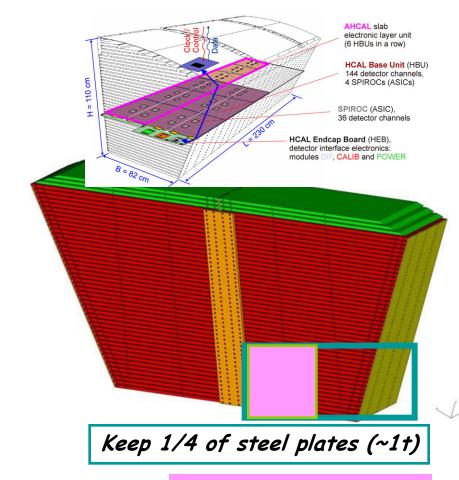
- flatness measured from 4 raw plates 2500 mm x 1500 mm Order 1 batch 1 (not roller leveled)
- order 1 batch 1 water cut to individual size
- flatness measured for each plate
- plates send to roller leveling -> finish mid of July
- flatness measurement -> end of July
- milling starts in beginning of August

sensitive layer housing

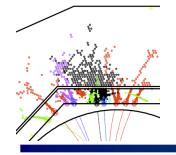

362x462x7 mm³ standard housing prototype available

362 mm x 462 mm standard housing

- contains 1 HBU unit for 360 mm sub-module
- 0.5 mm stainless steel
- One side border per bottom/cover plates
- 100 mm bottom plate extension for front end electronic
- 6 point welded fixation/distance bolds per HBU unit
- Cover plate fixed by 6 M2.5x4 screws per HBU unit
- total thickness 7 mm +-0.1 mm

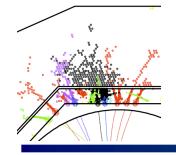

362 mm x 2260 mm standard housing

- contains 6 HBU units for 2160 mm sub-module
- other parameters see above

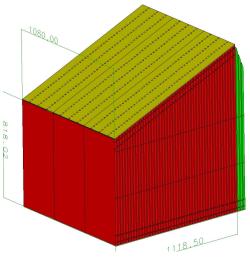

Prototype roadmap

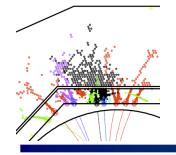
- HBU0 test
 - DESY test beam this summer
- HBU redesign
 - SPIROC2 or SPIROC3 (?)
 - New tiles
- Full layer = 12 HBUs 2010
 - O(1000) tiles (1 slab = 6 HBUs by end 2009, rest 2010
 - Can also be used to instrument an e.m. tower in the vertical cross section
- Compact re-design of layer end
- → e.m. beam test at DESY in 2010
 - Possibly at CERN with higher energy or ILC like time structure?
- Full module 2011-2012 if funded

Instrument half of this

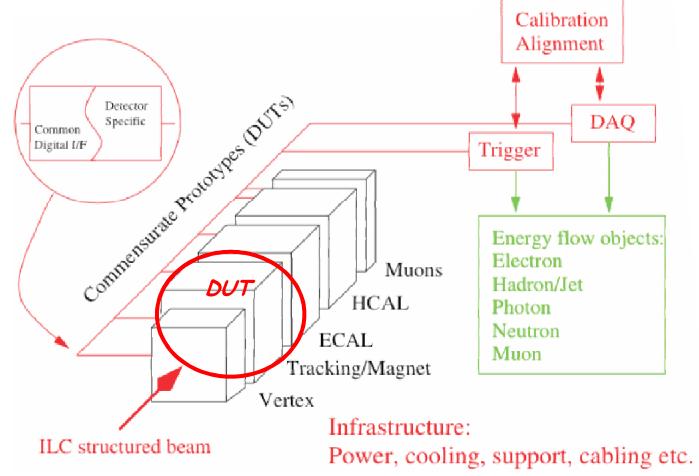


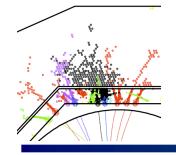
The "old" hardware


- Active scintillator layers and read-out:
 - Back to DESY this week
 - Re-installation as cosmic test stand without absorber for long-term and calibration studies
 - Could be used with different absorber structure, e.g. W
- Absorber stack
 - Booked for DHCAL RPCs
 - Reminder: adjustable gap etc, ideal for tests of alternative technologies (GEMs, Micromegas, strips,...)
- Movable stage
 - Has to return by April 2011
 - Can carry also other stacks

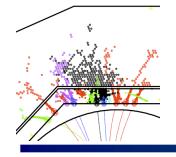

Status

- Right at the return from the physics prototype data taking campaign, we are embarking for new targets
- Beginning of 2nd generation data taking this summer 2009
- Full-size layer and minical in 2010
 - Possibly with different coupling options
- A technological demonstration of an integrated and compact scintillator HCAL option by 2011
- Ready to be extended to a full "module 0" then

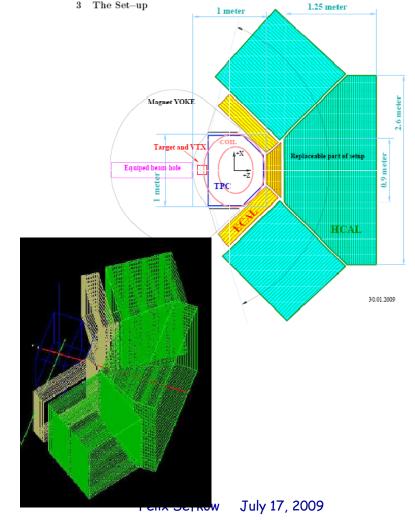


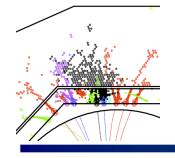

Future test beam

Integration: next step



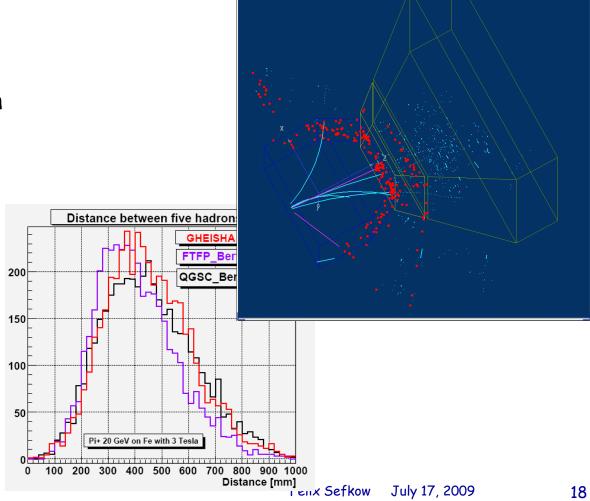
Vertical integration

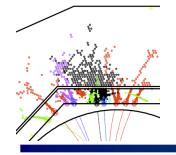

- Further test of particle flow: interplay of detector sub-systems
- Mechanical integration: "common rail"
- Common DAQ and slow control
- Common data processing and reconstruction
 - Grid infrastructure
- · Devices under test interchangeable: flexible set-up
 - Well defined interfaces



Integrated TB experiment

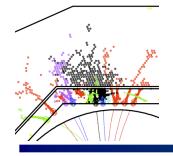
- Technological goal
 - Operational aspects of technological prototypes
 - Detector integration: DAQ, alignment,...
- Physics goal
 - Study of PFLOW with real multi-particle events
- Can this realistically be done?
 - Started simulation study with toy model





Simulations

- Investigate
 - Target losses
 - Acceptance losses
 - Particle separation
 - Model dependence
- Optimize geometry
- Try on realistic (i.e. existing) magnets
- NB: exclusive final states from nuclear targets → G4



Open questions

- Study not finished
- It appears that PFA resolution dominated by acceptance losses unless detector very large (2x2m² front face)
- A real magnet has not been found yet, existing TPC magnet has cryostat and will produce s-shaped tracks
- What can be done with multi-particle events
 - With limited acceptance
 - With and without field
- Will need shower simulation to interpret results
 - Model uncertainties

Summary

- Technical demonstrator by 2010/2011
- Prototype possible 2012
- Calorimeter topics
 - New electronics, calibration, stability issues
 - Timing
 - Tungsten
- With additional infrastructure
 - Magnetic field
 - Kaons
- With integration
 - PFLOW studies, but no full test

