

HCal Calibrations

Status, plans, and open issues

Niels Meyer, DESY HCal Main Mtg. July 16, 2009

Tool box status

- New version of IntegratedHcalCalibrationProcessor with auto temp. correction developed, tested, and released (calice_reco)
- Requires new storage and helper classes (calice_userlib)
- Update to CVS HEAD (tags to come...) for
 - calice_userlib
 - calice reco
 - calice_run (for steering files)
- New web page for version dependencies: https://twiki.cern.ch/twiki/bin/view/CALICE/SoftwareVersions
- Beware of upstream dependency:
 - ilcsoft v01-06 plus LCCD v00-05-pre (waiting for ilcsoft v01-07)
 - appropriate ilcinstall script for CALICE on TWiki: https://twiki.cern.ch/twiki/bin/view/CALICE/SoftwareInstallation

Ingredients for hit reco

- New calibration scheme requires 4 calibration measurements:
 - A⁰ Mip calibrations per voltage setting
 - dA/dT Mip temperature slopes for auto T correction
 - G⁰ dG/dT Gain offsets and T-slopes per voltage setting
 - IC intercalibration (universal set, averaged and cleaned)
- dA/dU Mip voltage slopes for 'manual' extrapolation in case A^o is not available for certain voltage setting
- Uncertainties on green inputs affect full calibrated amplitude, uncertainties on blue inputs only the saturation correction factor

TB periods

CERN 08 / '06 CERN 10 / '06

CERN 2007

FNAL 08 / '09 FNAL 2009

- Changed color = (partially) changed voltage
 ⇒ require at least 6 sets of Mip and Gain constants and slopes
 (IC does not change with voltage)
- Currently database status:

- A^o from CERN 2007, valid from 2006-09

!!! voltage !!!

- dA/dT from CERN 2007, valid from 2006-09
- G^o from CERN 2007, valid from 2006-09

!!! voltage !!!

- dG/dT from CERN 2007, valid from 2006-09
- IC from CERN 2007 topped up with FNAL 2008, valid 2006-09
- Technically everything runs, good for CERN 2007 only

Extraction tools

Muon data fitting:

- A⁰ fits on small set of muon runs established with some hands-on work. Fit quality checks to be automated
- dA/dT has only been extracted once and never really been cross checked thoroughly
- new diploma student from Prague: Boris Bulanek

Gain data fitting:

- Peak fits for individual gain runs available since long
- Simultaneous G⁰ and dG/dT fits on many gain runs established with some back-and-forth between different people
- IC extraction for individual Pm/CmVCalibScans established, requires (manual) clean-up

- Need tracking to work before 'global' alignment, which is slowly improving
- Summer student at Hamburg to work on tools to align HCal-in-world and module-in-HCal using muon data

Next steps

- Get reasonable constants for <u>all</u> periods
- Analyze as many muon runs as possible, at least one set per voltage setting. More automated tools necessary for 'mass production' and fit quality checks?
- Cross checks on dA/dT measurement (and dA/dU while at it)
 Re-fitting A⁰ necessary (Gaussian vs. LanGau fit)?
- Cross check G⁰ and dG/dT slope fits, quality criteria
- Closer look at IC understand first principles rather than dubious selection of acceptable measurements
- Study influence of electronics (chip exchange)
- Documentation and tool repository