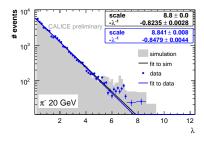
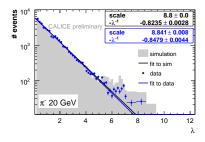
Shower Start and Hadronic Profiles Revisited

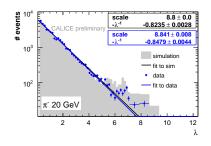
Benjamin Lutz

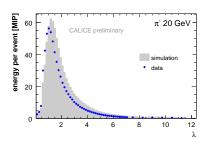
16th July 2009



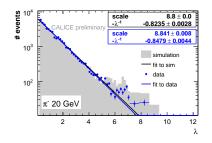

Achieved so far

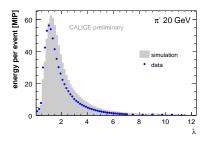
• Find layer of shower start.

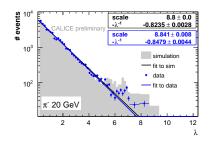

Achieved so far

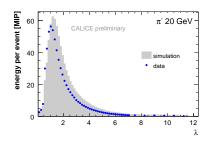

- Find layer of shower start.
- Measure shower start point distribution.

Achieved so far

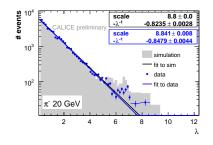

- Find layer of shower start.
- Measure shower start point distribution.
- Compare to Simulation.

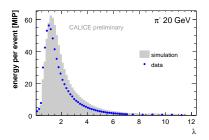


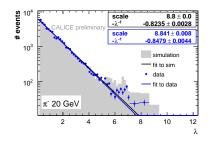


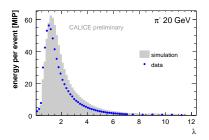

Achieved so far

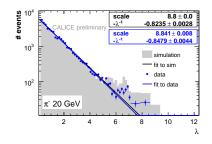
- Find layer of shower start.
- Measure shower start point distribution.
- Compare to Simulation.
- Measure reduced "longitudinal" profile.

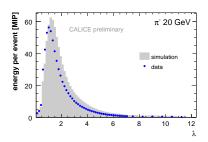


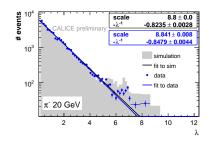


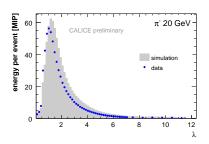

Open issues

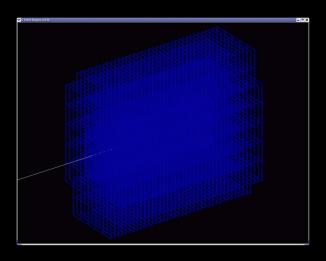

Rotation.




- Rotation.
 - Layer corresponds to z-range. Where is the start?
 - How to handle varying volume of detector?

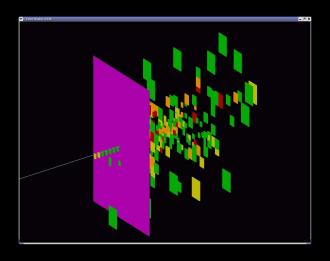


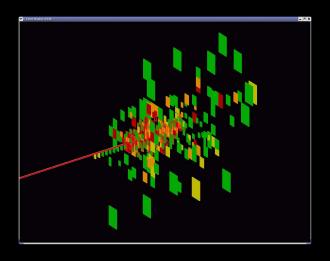

- Rotation.
 - Layer corresponds to z-range. Where is the start?
 - How to handle varying volume of detector?
- What is the resolution of the found position?

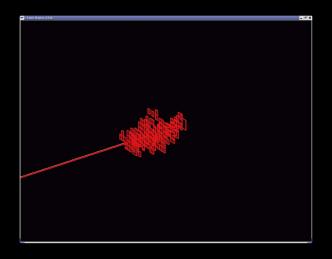


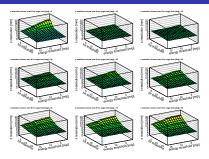
- Rotation.
 - Layer corresponds to z-range. Where is the start?
 - How to handle varying volume of detector?
- What is the resolution of the found position?
 - How does it influence the measurement of $\lambda_{\rm I}$?
 - What is its smearing of the reduced profile?



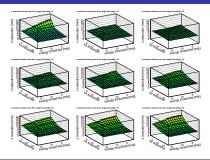

- Rotation.
 - Layer corresponds to z-range. Where is the start?
 - How to handle varying volume of detector?
- What is the resolution of the found position?
 - How does it influence the measurement of $\lambda_{\rm I}$?
 - What is its smearing of the reduced profile?
- Where in x-y-plane does the shower start?


full detector with incoming π


activity in detector

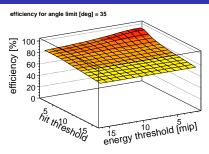

old method: shower start layer

new method: shower start clustering



new method: shower start clustering

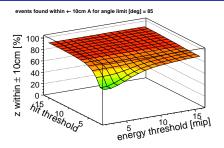
Optimization


- Three parameters to optimize
 - hits in cluster
 - energy in cluster
 - angle of cluster

Optimization

- Three parameters to optimize
 - hits in cluster
 - energy in cluster
 - angle of cluster

Observables



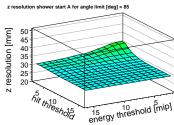
Optimization

- Three parameters to optimize
 - hits in cluster
 - energy in cluster
 - angle of cluster

Observables

efficiency to find a cluster

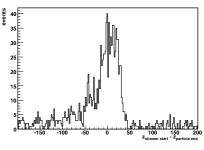


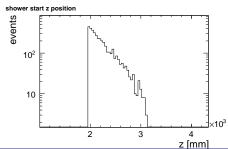

Optimization

- Three parameters to optimize
 - hits in cluster
 - energy in cluster
 - angle of cluster

Observables

- efficiency to find a cluster
- fraction of reasonably well reconstructed starts ($\pm 10 \mathrm{cm}$)


Optimization


- Three parameters to optimize
 - hits in cluster
 - energy in cluster
 - angle of cluster

Observables

- efficiency to find a cluster
- fraction of reasonably well reconstructed starts (±10cm)
- mean position a resolution

Example 30GeV π^+

Rotation

one layer averages over several z-positions

Rotation

- one layer averages over several z-positions
- detector volume varies over z

Rotation

- one layer averages over several z-positions
- detector volume varies over z
- correlation between longitudinal and radial sensitivity

Rotation

- one layer averages over several z-positions
- detector volume varies over z
- correlation between longitudinal and radial sensitivity
- cell center shifts depending on cell size
 - ⇒ clustering of cell positions in z

Rotation

- one layer averages over several z-positions
- detector volume varies over z
- correlation between longitudinal and radial sensitivity
- cell center shifts depending on cell size
 - \Rightarrow clustering of cell positions in z

How to cope with

Rotation

- one layer averages over several z-positions
- detector volume varies over z
- correlation between longitudinal and radial sensitivity
- cell center shifts depending on cell size
 - \Rightarrow clustering of cell positions in z

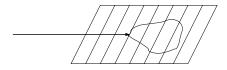
How to cope with

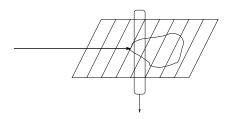
distribute energy deposits over full volume

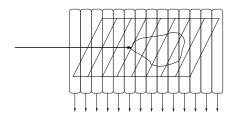
Rotation

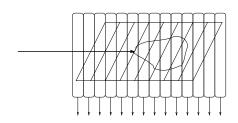
- one layer averages over several z-positions
- detector volume varies over z
- correlation between longitudinal and radial sensitivity
- cell center shifts depending on cell size
 - \Rightarrow clustering of cell positions in z

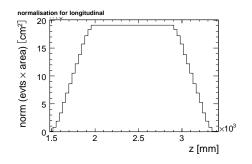
How to cope with

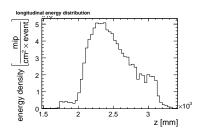

- distribute energy deposits over full volume
- normalize properly

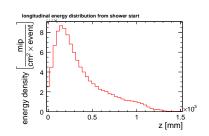

Rotation

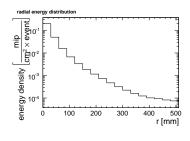

- one layer averages over several z-positions
- detector volume varies over z
- correlation between longitudinal and radial sensitivity
- cell center shifts depending on cell size
 - \Rightarrow clustering of cell positions in z

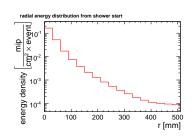

How to cope with


- distribute energy deposits over full volume
- normalize properly
- be aware of biasing regions






First Look at "new" Profiles



- low statistics (10k)
- ignoring events that start in transition region
- normalization needs crosschecks

First Look at "new" Profiles

- low statistics (10k)
- ignoring events that start in transition region
- normalization needs crosschecks

Conclusions & Outlook

Conclusions

- improved shower start finding developed
 - 3D space point
 - extensive optimization
 - accuracy quantified
- corrected profiles for rotated detector
- code development for
 - cell properties during reconstruction
 - cell positions correction
 - neighbouring cells

Conclusions & Outlook

Conclusions

- improved shower start finding developed
 - 3D space point
 - extensive optimization
 - accuracy quantified
- corrected profiles for rotated detector
- code development for
 - cell properties during reconstruction
 - cell positions correction
 - neighbouring cells

Outlook

- differential profiles
- code improvement for normalisation
- compare data and simulation
- analyze leakage exploiting
 - new shower start
 - code capabilities