

Analysis of electromagnetic showers in CALICE Analog Hadron Calorimeter prototype (AHCAL)

Sergey Morozov

DESY, Hamburg

Analysis of electromagnetic showers in CALICE AHCAL prototype CALICE tile AHCAL prototype at CERN 2007 test beam facility

AHCAL prototype: - 38 layers (30 with high granularity at central region) - each layer has 2cm of absorber (steel) and 0.5cm of active scintillator layer - length: 114.57 cm, hadronic: $5 \lambda_0$, e/m: 43.7 X₀ Positron runs collected: Energy: 10 - 50 GeV Position of beam: 0, +6cm, -6cm Angles: 0,10,20,30 degrees

Analysis of electromagnetic showers in CALICE AHCAL prototype the very first results from e+ data analysis..

Sergey Morozov

Longitudinal profile study..

<u>×1</u>0³

400

energy sum

An electromagnetic shower's energy profile:

$$dE/dt = p_1 \cdot t^{p_2} \cdot e^{-p_3 \cdot t}$$

where E – energy deposited, t – depth in calorimeter

e+, 10GeV

The maximum depth of an e/m shower in calorimeter for e+(e-): $t_{max} = [\ln(E/e_c) - 0.5] [X_0]$ E – particle energy e _ – critical energy (≈ 33.6 MeV) Calculated: From data: t_{max} ≈ 5.2 X₀ $t_{max} \approx 5.3 X_0$

exp (black) and MC (red) with re-scaled saturation and temperature correction

exp (black) and MC (red) all effects included

Sergey Morozov

A precision measurements of the absorber's thickness.

- a stack is still assembled, only edges accessible
- measurement of six points at each plate with an accuracy of ~ 100 μ m

The thickness in the GEANT4 Mokka model by default: 16mm of steel ...and now we have more complicated picture:

exp (black) and MC (red) + measured thickness of each Layer

Sergey Morozov

With new Layer thickness implementation we have much better consistency between data and MC!

Also we can check an individual tile response:

- compare the data and MC in shower core tile (52/52) where we have the highest saturation effect

central tile for various layers all corrections included data (black) and MC (red)

Sergey Morozov

2007 e+ data (black), 16mm absorber plates MC (red), and new layers' thickness MC (blue)

pure MC:

5.67% (16mm) and 5.99% (new) ~ 4% effect

+ digitization (+temp correction)

7.04% (16mm) and 7.11% (new) < 1% effect

Summary & Outlook

- Electromagnetic showers in Analog Hadron Calorimeter is a very good tool for validating the calibration procedure as well as checking and validating the Monte Carlo geometry models and digitization procedures
- After an accurate and precision calibration and corrections:
 - a) an expected 2% level of uncertainties in reconstructed energies of positrons is achieved
 - b) a linearity of the calorimeter response for positrons is less then 4% (residuals to the linear fits) in 10 – 50 GeV range
- new Mokka model with real layer thicknesses is introduced. Monte Carlo study of this model shows quite good agreement for geometrical e/m shower positions in AHCAL
- further Monte Carlo studies are coming for different angles of rotation

Backup slides

data (before corrections) (black) and MC (red)

Sergey Morozov

16/07/2009

exp (black) and MC (red) + 5mm of Fe just before 1st layer of AHCAL

Sergey Morozov

