Tracks in hadron showers

Lars Weuste

Max Planck Institute for Physics

CALICE HCal meeting 16.07.2009

Overview

1 Update on tracking

- algorithm reminder
- angle correction

2 parameter search inspired by Hough Transformation

- idea
- line parameters
- first results

3 GEV

Update on tracking ●○○○○ Hough Transformation

Tracking in hadronic showers

We are using the analog HCal only For more information see CAN-013

Algorithm

1 Find all isolated hits / layer

Update on tracking ●○○○○

Hough Transformation

GEV

Tracking in hadronic showers

We are using the analog HCal only For more information see CAN-013

Algorithm

- 1 Find all isolated hits / layer
- Start at innermost layer, connect hits at roughly same position in adjacent layers

Update on tracking ●○○○○

Hough Transformation

Tracking in hadronic showers

We are using the analog HCal only For more information see CAN-013

Algorithm

- 1 Find all isolated hits / layer
- Start at innermost layer, connect hits at roughly same position in adjacent layers
- **3** Use the finished track

Incident π hits @ central region

- \Rightarrow cells in outer region are hit by tracks with high angle
- \Rightarrow longer passage through the tile
- \Rightarrow more energy deposited
- \Rightarrow angle correction necessary

angle correction

 $E_{\text{corrected}} = E_{\text{deposited}} \cdot \cos \varphi$

Effect of angle correction

w/ angle correction

Effect of angle correction

Interpretation

Angle correction works, but is not strong enough! \Rightarrow maybe another physical effect?

L. Weuste (MPP)

tracks in hadron showers

Update on tracking ○○○●○

Hough Transformation

Possible solution: landau peak is thickness dependant?

Figure 27.7: Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value $\delta_p \triangleleft x$. The width w is the full width at half maximum.

taken from Particle Data Book 2008, July 24

will be checked!

L. Weuste (MPP)

tracks in hadron showers

landau peak thickness dependant?

First results

- \blacksquare Plot shows deviation from expected value of 1 MIP vs $\cos\phi$
- If angle correction was sufficient: straight line
- Early result! Needs more investigation.

A parameter search inspired by Hough Transformation.

Tracking: parameter search - line parameters

Ansatz: the parameters

 (θ,ϕ) as in spherical coordinate

 (x_0, y_0) of the layer L_{\perp} perpendicular to $(heta, \phi)$

L. Weuste (MPP)

tracks in hadron showers

GEV

Tracking: parameter search - algorithm

• Divide θ , ϕ into n_{θ} , n_{ϕ} parts (binning)

Tracking: parameter search - algorithm

- Divide θ , ϕ into n_{θ} , n_{ϕ} parts (binning)
- For each value of (θ, ϕ) rotate the detector by $(-\theta, -\phi)$
 - \Rightarrow line direction is *z*-axis
 - \Rightarrow layer L_{\perp} is x/y layer

- Divide θ , ϕ into n_{θ} , n_{ϕ} parts (binning)
- For each value of (θ,ϕ) rotate the detector by $(-\theta,-\phi)$
 - \Rightarrow line direction is *z*-axis
 - \Rightarrow layer L_{\perp} is x/y layer
 - For each hit calculate (x₀, y₀), i.e. take (x, y) of rotated detector hit
 - Fill this combination of (θ, φ, x₀, y₀) into a histogram (parameter space)

- Divide θ , ϕ into n_{θ} , n_{ϕ} parts (binning)
- For each value of (θ,ϕ) rotate the detector by $(-\theta,-\phi)$
 - \Rightarrow line direction is *z*-axis
 - \Rightarrow layer L_{\perp} is x/y layer
 - For each hit calculate (x₀, y₀), i.e. take (x, y) of rotated detector hit
 - Fill this combination of (θ, φ, x₀, y₀) into a histogram (parameter space)
- Search the parameter space for local maxima. These are our probable tracks.

- Divide θ , ϕ into n_{θ} , n_{ϕ} parts (binning)
- For each value of (θ,ϕ) rotate the detector by $(-\theta,-\phi)$
 - \Rightarrow line direction is *z*-axis
 - \Rightarrow layer L_{\perp} is x/y layer
 - For each hit calculate (x₀, y₀), i.e. take (x, y) of rotated detector hit
 - Fill this combination of (θ, φ, x₀, y₀) into a histogram (parameter space)
- Search the parameter space for local maxima. These are our probable tracks.
- Filter these tracks according to minimum required number of hits, gap sizes ..

Tracking: parameter search - first results

Impressions

Update on tracking

- results look good
- tracks are splitted very often
- lacksquare = 100 times slower than old method
- For picture see next slide

Properties

- Based on Qt and OpenGL
- Written by Andreas Moll (MPP) for Belle/Belle2 as official Event Display
- Generic InputModule interface for easy addition of other data input sources like LCIO
- This is alpha version, still under development

Properties

- Based on Qt and OpenGL
- Written by Andreas Moll (MPP) for Belle/Belle2 as official Event Display
- Generic InputModule interface for easy addition of other data input sources like LCIO
- This is alpha version, still under development
- Please press ALT-TAB for live demo :)

