PM report July 1, 2009:

- Meetings
 - FALC
 - Quebec, July 12 13, 2009
 - ILCSC
 - Hamburg, August 19, 2009
 - ALCPG09
 - Albuquerque, Sept 29 Oct 3, 2009
 - CLIC 09
 - CERN Oct 12-16, 2009
 - Applications of High Intensity Proton Beams
 - Fermilab Oct 19-21, 2009
 - Accelerator Design and Integration meeting
 - Sometime in November
 - TDP1 AAP Review –January 6-8, 2010

R & D Plan

- AD I meeting
 - Single tunnel
- CERN / CLIC
- JINR / GSPI
 - Publication of joint report
- SCRF industrialization
- 'Association for Advanced Accelerators'...
 - 'AAA' Japan

Reports Due:

R & D Plan

- Draft Release 4 to be submitted to EC for review today
- Release 4 due for draft distribution to FALC Resource Group
- Rel 4 will have updated global resource tables.
- R & D Plan will include references to changes in plan; an historical, traceable, record
- R & D Plan will not include a compendium of completed work
- Resources must support baseline design development

R & D Plan

- AD I meeting
 - Single tunnel
- CERN / CLIC
- JINR / GSPI
 - Publication of joint report
- SCRF industrialization
- 'Association for Advanced Accelerators'...
 - 'AAA' Japan

C DESY Accelerator D / I meeting

- PM summary distributed June 8, 2009
 - http://ilc-edmsdirect.desy.de/ilc-edmsdirect/file.jsp?edmsid=D0000000*879845
- Key points
 - Low power option taken as given
 - No 'matrix' of Working Assumptions
 - Klystron 'cluster' analysis (late 2008) to be used as a model for cost comparison wrt RDR
 - both HLRF options (2a / 2b) to be studied for each of the 3 sample sites
 - Utility costs also evaluated for each sample site

• 2010 - : Baseline which includes 2 alternatives

- Allows flexibility; maintains solid cost basis

Single tunnel

- Adoption of single tunnel for main linac:
 - Review safety analysis in each region and consider solution(s) as required
 - The 'exec' summary of the above will be the 'definitive document' and will be used to support the single tunnel recommendation to AAP ALCPG
 - Availability task force access and equipment reliability/replacement time
 - Other area single-tunnel issues

ADI Timeline

- SB2009 Working assumptions defined
- Criteria and recommendations to be developed and presented at ALCPG09
- Writing assignments ALCPG09
- Final Review November 2009
- Submission to Project Director late November 2009

CFS meetings:

- June 2 CFS Internal Review of AD&I Meeting
- June 9 CFS and Damping Ring w/S. Guiducci
- June 30 CFS and Electron Source w/ A. Brachmann
- July 7 CFS and Positron Source w/J. Clarke and N. Collomb
- July 14 CFS and RTML w/N. Solyak

ADI Action Items

CFS	3	Schedule WebEx meetings with responsible area contacts	Kuchler	done
	4	Prepare feedback questions for TAG group meetings (requirements)	Kuchler	
	5	Evaluate SB2009 requirements and generate cost differentials	Kucher, Garbincius	2008 Klystron cluster used as model
	6	Evaluate impact of both HLRF solutions on all three sample sites	Kuchler, Osborne, Enomoto	
	7	Compile/review safety solutions for single-tunnel	Kuchler, Osborne, Enomoto	

ilc

HLRF/C	8	Update DRFS single tunnel integration Enomoto,			
FS		models to include utilities, services and	Fukuda		
		other (non-RF) hardware			
	9	Consider possible DRFS tunnel solution	Enomoto,		
		with cryomodules supported from the	Fukuda		
		floor			
	10	Identify/maximise common design	CFS + Fukuda,		
		features between both HLRF solutions	Adolphsen		

Manage	26	Form availability task force and define	PMs	
ment		plans/studies		
	27	Top-down re-evaluation and update of	PMs, Paterson	Will require
		RDR risk register		iteration with
				TAG leaders and
				review of
				definition of risk
				quantification
				(including cost
				impact)

R & D Plan

- AD I meeting
 - Single tunnel
- CERN / CLIC
- JINR / GSPI
 - Publication of joint report
- SCRF industrialization
- 'Association for Advanced Accelerators'...
 - 'AAA' Japan

Clic / ILC timelines

Is there a coherent 'joint strategy' to augment the 'joint statements' from 11/08

CERN resources for critical ILC activities

- Big 4:
- CFS
- Cryo
- Mass production of cryo modules
- Safety (emphasized by Cern DG)

Clic costing

R & D Plan

- AD I meeting
 - Single tunnel
- CERN / CLIC
- JINR / GSPI
 - Publication of joint report
- SCRF industrialization
- 'Association for Advanced Accelerators'...
 - 'AAA' Japan

DESY / JINR-GSPI

- June 25 26, 2009 at DESY
- Geotechnical report
 - Partial translation by Andrey Dudarev
 - http://ilcagenda.linearcollider.org/conferenceDisplay.py?confl d=3646
- delegation of GSPI:
 - Vasily KOZHANOV
 - Afanasy KRESTININ (Valery Sokolov came instead)
 - Evidently part of a very experienced team
- delegation of JINR:
 - Grigori SHIRKOV
 Grigory TRUBNIKOV
 Andrey DUDAREV
 Ioulian BUDAGOV (senior scientist; did not come)

Contractors

- Attendees from DESY
 - Holger Brehm (Steinfeld & Partner, Hamburg)
 - Lindemar Hänisch (Deutsches Elektronen-Synchrotron DESY) ,
 - Jens Mittag (GuD, Berlin)

• From US:

- Tracy Lundin (Hanson Engineering, Springfield IL)

Geological column of well 2-08

1. Recommended soils for accelerator placement: firm loamy soils, dense including grus and rubbles up to 15%.

2. Recommended depth of tunnel placement is 24,0m (absolute mark is 110,0m).

Геалагическая колонка скважины 2-08

10

.

Авс.отметка эстья : 134.00 м Общая глубина : 47.00 м

N слоя п/п Геологический	ИНДЕКС	Глэы залеі слоя, от	ина Гания М	Мощность, м	АБС. ОТМЕТКа Подошвы СЛСЯ, М	Литологическ. разрез	Г ЛУБИНО отбора образцов	Наименование грунта	С одиналающ	воды УСТАНОВ, ВОВЕНЬ УРОВЕНЬ	Интенсивность гамма-излучения грунтов I, мкР/час
1 oQIII		0.00	2.00	2.00	132.00	3	2	Песок мелкия, среднея платности, малоя степени водонасыщения, корииневыя, с единичными вклочениями гравия кремнистых пород, в верхнея части слоя с корнями травы Песок гравелистыя, среднея плотности, сремноя старони восмариновия	ы		
2 allII 3 alIII		<u>2.00</u> 3.00	3.00	2.50	131.00		4	Сердная степени водоносыщения, корианевыя, серыя Гравияныя грунт из обламкав изверженных и осадачных пород с заполнителем из песка крупного, серого, с редкими валунами кремнистых пород, насыщенныя водой, в инт.4,3-4,5 м с маломощными прослоями суглинка желто- серого мощностью 2-5 см	3.0	<u>5.00</u>	
4 gall me	к <u>.</u> 5	.5.50 7.70	7.70 8.10	2.20 0.40	126.30 125.90		6 1 8 4	Сыглинок легкия песчанистыя, тыгоплас- тииныя, красно-корииневыя, с глыс.7.0 м темно-корииневыя, известковистыя, с включением гравия, гальки, щебня изверженных и осодачных пород до 10%. Песок среднея крыпнасти, среднея плотности, насыщенныя водоя, известковистыя, с маломош ными прослаями сыглинка мягкопластичного.	7.7 ,,,-	n	
6 gQII ms 7 gQII ms 8 gQII ms	5 5 5	8.10 10.20 10.80	10.20 10.80 11.00	2.10 0.60 0.20	123.80 123.20 123.00		10	ТЕМНО-СЕРОГО Суглинок легкия песчанистыя, полутвердыя, темно-серыя, зеленовато-коричневыя, с вклю- чением дресвы, щевня, гораяя изверженных и осадачных пород до 10-16%, местами до 30%, в инт.9,7-9,8 м прослоя песка мелкого, глинистого, темно-серого Суглинок тяжелыя песчанистыя, мягкопластич-	/ <u>11</u> /	00	
9 f011 ah	h-ns	11.00 12.00	12.00 13.00	1.00	122.00		12 A 8	ныл, коринневато-серыл, с включением гравия, гальки изверженных и осадочных пород до 10–15%, с гнездами и линзами песка мелкого до 30% от мощности слоя Саглинок легкил песчанистыл.	1		
11 qQ11 oh	h	13.00	18.00	5.00	116.00		14 ■ 18 ■ 19 16	Гравильныя грант из обламков осадачных и изверженных пород с заполнителем из песка пылеватого, насыщенного водоя Песок мелкий, среднея платности, насыщенныя водоя, темно-серыя, серыя, кварц-полевошпатовыя, с единичными включениями гравия изверженных пород Сыглинок легкия, часто тяжелыя песчанистыя, тыгопластичныя, платныя, темно-серыя, темно-коричневыя, известковистыя, с включе- нием дресвы, щесня, гравия, гальки извержен- ных и осадочных пород до 10-15%		16.40	

Role of JINR – GSPI Study:

- The most advanced shallow site study
 underway
 - All other site studies involve deep rock
 - A kind of 'neutral' process
- Comparison between deep and shallow sites will indicate substantial cost savings
 - By evaluating a specific shallow sample site we are able make effective comparisons
 - Allows us to prioritize and define further studies

Goal for ILC-GDE / JINR-GSPI meeting

- Review GSPI Preliminary Report
- Discuss geo-technical aspects of TALDOM area
- Summarize in a jointly authored report
 - Sponsored by:
 - ILC GDE
 - JINR
 - GSPI
 - EC 'ILC Hi-Grade' FP7 programme
 - DESY

- Shallow site studies are very important for the ILC – GDE Conventional Facilities Technical Design Phase
 - Cost.
 - Comparison and evaluation will lead to cost savings and design improvements
- JINR GSPI is the most extensive shallow site study undertaken in support of the ILC – GDE Reference Design

- No other specific shallow site study is presently planned

- Site studies will facilitate the site selection process
- JINR effort is unique and will prove very useful in this complex task
 - Preparation of joint report comes at a critical time: 2009 will see a recommendation to update the GDE Reference Design
- On behalf of the ILC Project Managers, We thank you very much and strongly encourage further collaborative efforts

- Vic's First Preliminary Descriptions July 10
- G. Shirkov Soil Boring Report Release Agreement w/dist to V. Kuchler and M. Ross - July 10
- First Draft July 31 (Including Translations in ILC doc)
- First Full Draft with Introduction and Summary August 14
- First Edit August 28
- Final Document September 11

ic

R & D Plan

- AD I meeting
 - Single tunnel
- CERN / CLIC
- JINR / GSPI
 - Publication of joint report
- SCRF industrialization
- 'Association for Advanced Accelerators'...
 - 'AAA' Japan

Industrialization and cost reduction

- Re-visit previous effort, and update the costestimate for production
 - Review the RDR cost estimate (based on TESLA)
 - Include recent R&D experience (industry/lab)
- Encourage R&D Facilities for industrialization
 - Develop cost-effective manufacturing, quality control and cost-reduction in cooperation with industry
- Reflect the R&D progress for cost-reduction
 - Baseline \Rightarrow Forming, EBW, assembly work...

CPlan for R&D facilities and Preparation for Industrialization

Bench-mark R&D facility (pilot plant) to study cost-effective manufacturing

- Forming and preparation machining,
- Pre-surface treatment and preparation,
- EBW process with efficient automation,
- In-line Inspection during fabrication process for quick-feedback,

R&D facilities to be sited at Laboratories

- Effort to seek for the most cost-efficient manufacturing with keeping information to be open,
- Development to seek for a bench-mark, manufacturing facilities (design and/or itself can be applicable for the real production.
- It is important for industries to participate to the program since Day-1. for planning.

• We may discuss a possibility

 An industrial meeting to be held as a satellite meeting at the 1st IPAC, Kyoto, May, 2010.

Complementary Plans in Industrial R&D Priority

- In Asia (KEK) and Europe (DESY)
 - Priority for the nominal manufacturing process using EBW technology at both laboratory and Industrial production.
 - Encourage advanced R&D such as hydro-forming (w/o EBW process) in limited effort
 - Large grain sheet with multiple.cutting may be in a parallel effort.
- In Americas (FNAL according to B. Kephart)
 - Priority for hydro-forming approach and others in Femilab leadership effort, in cooperation with American Institution

• **PM(SCRF)** consideration

- It is important to encourage globally complementary R&D efforts
- It is important to support the R&D program, positively, to each other.

R & D Plan

- AD I meeting
 - Single tunnel
- CERN / CLIC
- JINR / GSPI
 - Publication of joint report
- SCRF industrialization
- 'Association for Advanced Accelerators'...
 - 'AAA' Japan

AAA - Japan

- Routine accelerator technology
 presentations to industry groups
 - Including CFS topics
- CFS presentations on JPARC experience by
 - Yoshioka
 - Miyahara
 - (in Japanese)
- Have asked Akira to consider arranging related presentations to ILC GDE – CFS group