Overview on CERN Test Beam Facilities

On behalf of the CERN SPS/PS test beam coordinator: Horst Breuker, CERN

Courtesy:
Matteo Alfonsi, CERN
Horst Breuker, CERN
Ilias Efthymiopoulos, CERN
Edda Gschwendtner, CERN
Wolfgang Klempt, CERN

Overview

- East Area Test Beam Facility
- North Area Test Beam Facility
- Test beam magnets
- Example of RD51 common infrastructure
- Short-term test plans LCD group at CERN
- Summary

Test Beam Facilities at CERN

PS East Area

5 beam lines total length 300m

300 scientists / year performing experiments and tests

The East Experimental Areas at the PS

East Area Beam Characteristics

- Momentum range
 - Secondary beam: 1 GeV/c 15 GeV/c
- Particle type and intensity
 - electrons, hadrons, muons
 - max. 1-2*10⁶ particles per spill
 typically 10³ 10⁴ used
- Spill structure from PS
 - 400 ms spill length
 - typically 1 spill every 33.6 s, more on request

SPS North Area

7 beam lines

total length 5.8 km

Three experimental halls: EHN1, EHN2, ECN3

~2000 scientists / year

The North Experimental Areas at the SPS

- The SPS proton beam (400/450 GeV/c) slowly extracted to North Area
- Directed towards the three North Area primary targets T2, T4 and T6
- From the primary targets:
 - T2 → H2 and H4 beam lines
 - T4 → H6 and H8 beam lines

and P42/K12 beam line (NA62)

T6 → M2 beam line (NA58/COMPASS)

North Area Test Beams

Up to 4 user areas per beam line

Possibility to take parasitic muons behind main user Some areas permanently occupied by LHC users (ATLAS, CMS, LHCb, TOTEM)

North Area Beam Characteristics

- Momentum range
 - H2, H4, H8:
 - 10 400 GeV/c (secondary beam)
 - primary proton beam at 400 (450) GeV/c
 - H6:
 - 5 205 GeV/c
- Particle type
 - electrons, hadrons, muons
 - → secondary target → tertiary beam
- Particle intensity
 - max. 2*10⁸ particles per spill
- Spill structure from SPS
 - 4.8s 9.6s spill length, debunched
 - 1 spill every 14s ~48s
 - spill length/repetition frequency depend on number of facilities which need SPS extraction (CNGS, LHC)

User Requests for SPS

SPS Secondary Beams – Experiments and Tests

- Weekly PS/SPS user meetings
- Beam requests to SPS coordinator:
 - Request < 1week agreed and recommended by SPS coordinator
 - >1 week: discussed and recommended by SPSC
 - LHC related request often discussed and recommended by LHCC
 - Final approval by Research Board

Infrastructure

What is (could be) provided

- Counting houses (barracks) with racks and network connections
- Beam instrumentation:
 - Scintillator for beam intensity measurement
 - XDWC for beam profile measurement
 - Threshold Cherenkov counter for particle ID
 - CEDAR counter for particle ID
 - Electromagnetic calorimeter for particle ID
 - Spectrometer for beam momentum measurement
- Scanning table (XSCA)
- Magnets see slides later
- Cryogenics installation

Irradiation Facilities

http://irradiation-facilities.web.cern.ch/irradiation-facilities/

- PS East Area: T7 line
 - Protons and mixed field irradiation
 - 1-10*10¹³ protons/(cm²hr) on a 2*2 cm² surface
 - 3-10*10¹¹ neutrons/(cm²hr) on a 30*30 cm² surface (1 MeV equiv.)
- SPS North Area: CERF facility
 - Mixed field irradiation
 - In H6 beam line : <1*10⁸ ppp @120 GeV/c
- GIF
 - 137Cs source irradiation over large surfaces, 740 MBq (in 1997)
 - Combined with SPS West area beam (until 2004)

Plans for improved facilities (protons, mixed-field, GIF++), end 2010

14-August-2009

2009 PS Fixed Target Programme

Version 3.0

Colour code: green = PS/SPS-exp; purple = LHC-exp; dark blue = Outside exp; yellow = not allocatable or Machine Development

		P1			P2			P3					P4				P5				P6			
		35 30 Apr 4 Jun			35 4 Jun 9 Jul			35 9 Jul 13 Aug					35 13 Aug 17 Sep				35 17 Sep 22 Oct				32 22 Oct 23 Nov			
Т7	Setup 7	Irradiation				35			30				Irradiation 35			Irradi <mark>atio</mark> n 3 <mark>5</mark>			Irradiation 32					
Т8	;	Setup DIR			DIRAC 35		DIRAC 35					DIRAC 35			DIRAC 35			DIRAC 32						
Т9	Setup 7	T2i	K-ECAL 35		T2K ECAL 14	CALICE RPC 17	4		OMPASS CALO 16	EN		MR 7	EMR-ADD	Br	ERA icks 13	8	ECA	AL 15	j	VIPIX	NA 18		PE 1	BS 7
T10	Setup 7	ALICE PMD 18		ALICE MEGAS 15	ALICE TOF 14	ALICE VHMPID 13	CMS BCM 8	T		RD51 CALICE 10	MICE EMR-ADS 10		MICE VIR-CAI			ATLA <mark>3</mark> 3088IP 10		CALICE MMEGAS 15		TOF 8		ALIC HPT 18	D	ALICE VHMPID 9
T11	Setup 7				18	CLOUD 17		CLOUD 35					35			CLOUD 35			CLOUD 32					

SPS/PS-Coordinator: Horst Breuker E-mail: SPS.Coordinator@cem.ch phone: 73777 (ext. +41 22 767 3777) mobile: 164212 (ext. +41 76 487 4212)

24-August-2009 2009 SPS Fixed Target Programme

Werrelion 2.0

Colour code: green = SPS-exp; purple = LHC-exp; dark blue = Outside exp; yellow = not allocatable or Machine Development

	P1	P2	P3	P4	P5	P6		
	35	35	35	35	35	32		
	30 Apr	4 Jun	9 Jul	13 Aug	17 Sep	22 Oct		
	4 Jun	9 Jul	13 Aug	17 Sep	22 Oct	23 Nov		
T2 -H2	NA CMS CREAM IN TR CASTOR 7 3	CMS WCALO CMS TR HCAL 11 10	CMS NA81 HCAL 4 14 17	NA81 35	NA61 CREAM NA61	NA61 NUCLEON 24 8		
T2 -H4	NA CMS CMS	Melauro STRO ROS1	CMS DREAM RPC 15 10 3	CALO 7 2 11	0MS NA63 UA9	RD51 CMS LHCf ECAL 10 9 13		
T4 -H6	0 5 5 7 3		ATLAS EUDET OFFICE BOOK BETT OFFI	LCFI SILC SUDET ATLAS	RD42 ATIAS ATIAS BCM LUCID FP420	MarkPk MMEGASICM		
T4 -H8	™ 3DSi 3 16 I	ATLAS ATLAS MDT TROMPON Goods Roma 1 5 9 8 3 9	GOSSIP - UA9 RP		UA9 00 00 00 00 00 00 00 00 00 00 00 00 00	22		
T4 -P0	NA Setup 10 NA62	NA62 NA62 7 7 9 19	28	35	NA62 29 6	NA62 10 22		
T6 -M2	COMPASS 3 17	COMPASS 35	COMPASS 35	COMPASS 35	COMPASS 35	COMPASS 32		
CNGS	NA CNGS	CNGS 35	CNGS 35	CNGS 35	CNGS 35	CNGS 32		

SPS/PS-Coordinator: Horst Breuker

Comments:

E-mail: SPS.Coordinator@cern.ch

- no comments

phone: 73777 (ext. +41 22 767 3777) mobile: 164212 (ext. +41 76 487 4212)

> Fixed-target running in 2009: approx. 28 weeks Fixed-target running in 2010: approx. 20 weeks

CERN test beam magnets

PS east hall:

TPC-90 magnet (last used by HARP), solenoid diam.
 cm, 224 cm long, 0.7 T (~1.3 T in pulsed mode).

EHN1, H2 beam line:

- M1 magnet, superconducting, large dipole, 82 cm gap,
 1.4 m diameter, Field 3T, used by CMS
- MNP22A, C-shaped classical dipole, 50 cm gap, 1 m width, 1 m depth, 1.37 T (presently 0.7 T)

• EHN1, H4 beam line:

Goliath (last user NA57), large classical dipole, ~160*240*360 cm, 0.85
 T field

• EHN1, H8 beam line:

 Superconducting dipole, diam. 1.6 m, ~4 m overall length, 1.56 T field at 5000A, used by ATLAS, contains a rail system for inserting detectors

http://project-fp7-detectors.web.cern.ch/project-FP7-detectors/TEST %20BEAM%20LINKS.htm

Example: RD51 common test beam infrastructure

- ☐ In H4 beam line, used a few weeks per year
- Common infrastructure in:
- Support mechanics
- ☐ Large magnet (Goliath)
- □ Gas system
- ☐ Cables, trigger
- □ Reference tracker
- ☐ HV, Electronics

Semi-permanent infrastructure

Common effort by the collaboration

The RD51 installation @ SPS/H4

• Cables lenght can arrive up to more than 8 m

RD51 in H4 line

Lucie Linssen, CERN

4 November 2009

Motivation for Tungstenbased HCAL test

- Physics at CLIC with a center of mass energy of 3 TeV requires to build a calorimeter system with rel. small energy leakage.
 - => Design value for λ_{int} ≥ 1 (ECAL) + 7 (HCAL)
- Space available for barrel HCAL inside (reasonable sized) coil: Δr ≈ 1.40 m
 - => need to use a more dense material than Fe
- Why not use W as absorber material in HCAL??

Motivation (2)

- No experience with W as absorber material in HCAL
- $\lambda_{int}(W) = 10 \text{ cm}$, $X_0(W) = 0.35 \text{ cm}$
- λ_{int} (Fe) / λ_{int} (W) = 1.7, X_0 (Fe) / X_0 (W) = 5
- For a W absorber:
 - less visible energy (ionization)
 - more neutrons (spallation)
- For calorimeter design simulations need to be reliable and understood to a rather precise level.

Goals and Objectives for a W HCAL Prototype

- Validate and adjust simulations for HCAL performances
 - Linearity / energy
 - Resolution /energy
 - Shower structure in comparison to Fe
 - Time structure of signal (neutrons)
 - Compare scintillator with gaseous detectors
 - Experience with W plates

Later

- Other detector technologies
- Combine with ECAL proto

– ...

Proposal for a W HCAL Prototype

- Start 2010 with a "small" prototype:
 - Start with ~20 W plates size 80x80 cm², 1 cm thick
 - Use as much as possible existing equipment from CALICE (detector planes, readout electronics, DAQ, mechanical infrastructure....)
 - First test beam at PS in autumn 2010 (T9, π ≤ 12GeV)
 - Later increase depth to 40 or more layers and go to SPS

Detectors to be used

In 2010 start with existing CALICE scintillator cassettes

Overall size 90 x 90 cm² Central area equipped with small (3 x 3 cm²) cells

Equipped with readout and calibration

Experimental Setup (very preliminary)

Summary

- CERN has worldwide unique opportunity for detector and physics tests
 - PS and SPS beam-lines
 - Technical support and infrastructure provided by CERN
- Facilities are heavily used
 - Always fully booked
 - Already much used by the linear collider community
- ILC-type time structure seems possible at PS
- Possibility for LC semi-permanent testbeam infrastructure
 - Will require common effort
 - Will require common motivated request to SPSC committee
 - H6 location most likely, as already used by LC community
 - However 200 GeV limit is a problem for CLIC detector tests