

DESY Test Beam Facilities - Status and Plan

Norbert Meyners, DESY

LCTW 09

Orsay, 3.-5. Nov. 2009

DESY Test Beam

- DESY provides three test beam lines with
 1-5 (-6) GeV/c electrons
- Very simple system, no beam optics, only momentum selection via magnet.
- Bremsstrahlung beam generated by a carbon fibre in the circulating beam of the electron/positron synchrotron DESY II.

- Photons are converted to electron/positron pairs with a metal plate.
- Beam is spread out into a horizontal fan with a dipole magnet.
- Collimator cuts out final beam.

DESY II

- Mainly injector for DORIS and PETRA (synchrotron light sources).
 - → Long Up Times (10-11 month/a)
 - → Demand: High Reliability
 - → Not much room for improvements for the test beams

- The revolution frequency is 1 MHz, the RF frequency 500 MHz, and the bunch length around 30 ps. The average radius is 46.6 m
- For DORIS: DESYII delivers every second cycle (160ms) single bunch with about 3*10⁹ positrons at 4.5GeV
- For PETRA: DESYII delivers every fourth cycle (320ms) single bunch with 1*10¹⁰ positrons (3*10¹⁰ electrons) at 6GeV
- Test beam runs in old PETRA mode at 7GeV possible

DESY Test Beam

Ideal DESY II Cycle (no extraction)

Rates	Target	
Energy	3mm Cu	1mm Cu
1 GeV	~2.2 kHz	~ 0.5 kHz
2 GeV	~4.6 kHz	~1.1 kHz
3 GeV	~5.2 kHz	~1.3 kHz
4 GeV	~4.4 kHz	~1.1 kHz
5 GeV	~2.8 kHz	~0.5 kHz
6 GeV	~1.5 kHz	~0.2 kHz

- The rates are influenced by many parameters.
- Ideally, the maximum rate around 1 kHz (3 GeV, 3mm Cu convert, Collimator ca. 5mm x 5mm, DESY II maximum energy at 7 GeV, no beam extraction, no DESY III ramp).
- Few hundred Hertz are realistic

In practice is the maximal event rate around 2 kHz. (3 GeV, 3mm Cu convert, Collimator ca. 5mm x 5mm)

HELMHOLTZ GEMEINSCHAFT

Test Beam Layout

Facilities for Test Beam User

- All three test beam lines have
 - Interlock systems
 - Magnet control
 - Patch panels with preinstalled cables
 - Gas warning systems
 - Fast internet connection (DHCP)
- The user can ask for:
 - Translation stages
 - Premixed gases
 - Superconducting Magnet (1T)
 - Big Dipole Magnet (1T)
 - Beam Telescopes:
 - MVD Telescope
 - EUDET Telescope
- The users typically bring:
 - Data Acquisition incl. computers
 - Trigger scintillators

Test Beam Area 21

Recently refurbished -> New home of EUDET telescope

- Pixel beam telescope:
 - 6 layers of Monolithic Active Pixel Sensor (MAPS) detectors
 - DEPFET and ISIS pixel detectors for validation
 - DAQ system
 - Demonstrator telescope in use since summer 2007

More information

WWW.EUDET.ORG

HELMHOLTZ GEMEINSCHAFT

Test Beam 22: ZEUS Telescope

- Location of ZEUS MVD telescope (build in 1998)
- Telescope parameters:
 - 300 μm thick single-sided Si strip sensors
 - Each plane with 2 sensors perpendicular to each other
 - Strip pitch: 25μm
 - Readout pitch: 50μm
 - Active area: 32x32 mm²
 - Trigger window: 8x8 mm²
 - DAQ was upgraded to EUDET like system
- Plans for next years:
 - keep telescope running
 - improve software

Test Beam 24: EUDET

- Large bore magnet:
 - 1Tesla, Ø≈85 cm, standalone He cooling, supplied by KEK
 - infrastructure (control, field mapping, etc.) through EUDET
 - Magnet fully instrumented at DESY and ready for use

Test Beam Layout

Review 2008/2009

2008

- 8 Month Shutdown
 - A lot of work on the accelerator sub-systems (Complete new water cooling etc.) to increase the reliability of the injector for PETRAIII
 - Test beam vacuum system renewed!
- 3 User Groups + LCTPC collaboration

2009

- 7 User Groups + LCTPC collaboration
- Several 1-1½ week breaks due to work on new power supplies!
 - This task could not be finish in the long shutdown!
 - Should be finished in the shutdown January-February 2010
 - Mainly the LCTPC collaboration was effected
- New wave guide to spare RF-system (ready March 2010)

Outlook 2010

- Extend shutdown: Restart 22. February 2010 (tbc.)
- Machine study weeks every 6 weeks possible (DORIS/PETRA Service Weeks)
 - → "No (stable) beam mo fr 8 12!!!"
- Under discussion: break (2 weeks) in summer
- The EUDET telescope should be operational from March on
- PETRA will NOT start top-up-mode
 - → Chance to run DESY II at 7GeV

By the way:

 Ingrid/EUDET wants to build a demonstrator* telescope by re-using the demonstrator analog pixel chips. Should be ready by end 2010!

Availability and Summary

- DESY test beam is running from 22. Feb on throughout 2010
- Machine study weeks every 6 weeks possible (DORIS/PETRA Service Weeks)
- Users can apply for beam time through DESY test beam coordinators
 - -> up to three weeks possible, longer terms negotiable

You can apply for test beam time at DESY

testbeam.desy.de

Or contact: testbeam-coor@desy.de

- DESY provides three test beam lines with 1-6GeV/c electrons
- Very simple system, no beam optics, only momentum selection via magnet
- Perfect facility for proof of principle studies, efficiency studies and also resolution studies
- Infrastructure simple and flexible

Back Up Slides

GEMEINSCHAFT

Schedule 2010 1.Half

02.11.2009

Schedule 2010 2.Half

Schedule 2009 1.Half

28.10.2009

Schedule 2009 2.Half

