

Availability Task Force: Subgroup #2

John Carwardine, Ewan Paterson, Marc Ross 14/15 July 2009

Subgroup #2

(Marc Ross, Ewan Paterson, John Carwardine)

- Identify the drivers which dominate overall availability of each model (KCS, DRFS, RDR)
- Consider practical (what) and strategic approaches (who and how) on realizing the needed availability
- Examine different operations / maintenance models
- Develop a set of studies to be done using Availsim
- · Ultimately, answer the question:

"What does it take in order for the two linac configurations to be credible from an Availability stand-point?"

First things first...

- Set up two Availsim models
 - Two linac models one for each HLRF configuration
 - Everything else should be identical in both models
 - Single tunnel is defined for both SB2009 options
 - · Direct comparisons of 1 vs 2 tunnels are not needed
- · For each HLRF configuration, we need
 - Parts models for RF building block [do we have them?]
 - Estimates of repair times
 - Estimates of mean time between failures...

Device	Needed improvement factor	Downtime to these devices (%)	Nominal MTBF (hours)	•	To assess viability, we want				
Power supplies	20	0.2	50,000		to assess the technology				
Power supply controllers	10	0.6	100,000		drivers to availability				
Flow switches	10	0.5	250,000		Some components might be				
Water instrumentation near pump	10	0.2	30,000	•					
Magnets - water cooled	6	0.4	3,000,000		considered as 'QA drivers'				
Kicker pulser	5	0.3	100,000						
Coupler interlock sensors	5	0.2	1000,000		availability. These should be				
Collimators and beam stoppers	5	0.3	100,000		de-emphasized in the mode				
All electronics modules	3	1.0	100,000		•				
AC breakers < 500 kW		0.8	360,000	•	What's on that list?				
Vacuum valve controllers		1.1	190,000						
Regional MPS system		1.1	5,000						
Power supply - corrector		0.9	400,000						
Vacuum valves		0.8	1,000,000						
Water pumps		0.4	120,000						
Modulator		0.4	50,000						
Klystron - linac		0.8	40,000						
Coupler interlock electronics		0.4	1,000,000						
Vacuum pumps		0.9	10,000,000						
Controls backbone		0.8	300,000						

Consider three categories of equipment...

- · 'Standard' components
 - Vacuum pumps, flow switches, circuit breakers, ...
 - COTS parts
- · Technical systems with large operating base
 - Magnets, power supplies, controls,...
 - Good statistics for reliability estimates
- Technical systems with little / no operating base
 - Newly developed parts, challenging specs
 - Insufficient data for estimating MTBF

'Best available' MTBF data....

- Availsim is using MTBF numbers largely based on SLC operating experience
- Better reliability has been achieved at other labs on some of the relevant subsystems
 - Take the best numbers we can find, update Availsim
 - Who can get that information?
- It is in our best interest to use the most optimistic numbers that we can defend!

APS Reliability Summary for FY08

	Unavailability	Unavailability	Number	Mean Time	Faults Per		
FY 2008 Actual	Percent	Hours	of Faults	to Beam Loss	Day		
RF	1.04%	47.53	14	319.9	80.0	User Downtime Hours	109
Diagnostics	0.35%	16.17	7	639.8	0.04		
PS	0.68%	31.42	18	248.8	0.10	Scheduled Hours	458
Controls	0.02%	1.03	2	2239.4	0.01		
Network	0.00%	0.00	0		0.00		
Interlocks	0.01%	0.50	2	2239.4	0.01	Delivered Hours	4478
Accelerator	0.00%	0.00	0		0.00		
Beamline	0.04%	1.62	1	4478.8	0.01	User Availability	97.6
Radiation	0.02%	1.12	1	4478.8	0.01		
MOM	0.03%	1.53	2	2239.4	0.01		
S&A	0.00%	0.00	0		0.00		
Operations	0.15%	6.83	2	2239.4	0.01		
Physics	0.00%	0.00	0		0.00		
ID-FE	0.00%	0.00	0		0.00		
ID-FE/MD	0.00%	0.00	0		0.00		
ID-FE/XFE	0.00%	0.00	0		0.00		
Utilities	0.03%	1.60	1	4478.8	0.01		
Electrical - APS	0.00%	0.00	0		0.00		
Electrical - ANL	0.00%	0.00	0		0.00		
Cooling - ANL	0.03%	1.60	1	4478.8	0.01		
Other	0.02%	0.80	0		0.00		
Unidentified	0.02%	0.85	1	4478.8	0.01		
Total	2.36%	108.27	49	91.4	0.26		

ilr

Reasonable MTBFs for unproven technologies?

- Difficult!
- Could be extrapolated based on failures over a number of test hours ...but only to a limited extent
 - Eg 10,000hrs without a failure might be enough to claim an MTBF of 30,000+hrs (but not 300,000hrs)
- · Can be estimated using data from similar equipment
- Calculate using one of several methods (maybe)
- · Use Availsim to help assess what's needed
- How is the HLRF Group addressing this issue?

Preemptive maintenance

- Applies to: hoses, cables, capacitors, mechanical pumps, circuit breakers, cooling fans, etc, etc
- The clock is effectively reset on the expected time to failure.
- Also applies to fixing systemic problems based on prior failures
- PM for all units may take one shutdown or many shutdowns
- · In Availsim, this will be modeled by assigning long MTBFs

Maintenance models

- Basic parameters
 - Operate nine months per year (integrated luminosity)
 - Three months for shutdowns, maintenance, accelerator studies,...
 - RDR assumed one 3-month shutdown per year
- Impact of allowing opportunistic maintenance...?
- · How to apportion the 3 months of 'downtime'

Wrap-up (to do list)

- Set up and run Availsim models for the two SB2009 configurations
- Analyze downtime data to understand relative contributions from end-effects, repair times, ...
- Collect 'best available' reliability data from other labs and incorporate into Availsim
- Set up Availsim to allow study of different operations / maintenance models
- · Generate a studies list!