

CO₂ cooling of an endplate with Timepix readout

Bart Verlaat, Nikhef

LCTPC collaboration meeting DESY, 22 September 2009

Contents

- Introduction to CO₂ Cooling
- Overview of the current CO₂ systems in HEP
- CO₂ cooling for LCTPC
- Conclusions

CO₂ safety issues

Pressure Equipment Directive (PED):

- Stored energy determines the safety class.
- Stored Energy = Pressure x Volume
- CO₂ is environmental friendly, nontoxic and cheap

	ID	Pressure at 30ºC	Stored energy
CO ₂	1.4mm	72.1 bar	11.1 J/m
C_3F_8	3.6mm	9.9 bar	10.1 J/m

CO₂ systems in HEP

- 2 CO₂ cooling systems have been developed for HEP detectors so far.
 - AMS-TTCS (Tracker Thermal Control System)
 - Q= 150 watt
 - T=+15°C to -20°C
 - LHCb-VTCS (Velo Thermal Control System)
 - Q=1500 Watt
 - T= +8°C to -30°C
- Both systems are based on the **2PACL** principle invented at Nikhef

AMS on the ISS

f Velo of LHCb

2-Phase Accumulator Controlled Loop (2PACL)

2-Phase Accumulator Controlled Loop (2PACL)

NIME The AMS-Tracker Thermal Control System (AMS-TTCS)

CO₂ rack

The LHCb-Velo Thermal Control System (LHCb-VTCS)

Velo module with cooling block

W WE

The VTCS cooling plant

Calculation of a LCTPC cooling tube Assumed TPC endplate layout

BVERLAAT@NIKHEF.NL

Temperature gradients

(As function of cooling tube diameter and length)

LCTPC cooling tube performance (6 parallel loops)

2PACL for LCTPC

Warm 2PACL very simple

- Accumulator is CO₂ bottle @ room temperature
- Cold source is cold water

Bottle temperature = Detector temperature

AMS-TTCS was tested in the same way (Cold test done with bottle outside in winter)

Conclusions

- CO₂ cooling seem feasible for LCTPC
- A 6 loop option looks reasonable
 - Inner diameter 2.5mm
 - Length ~8m
 - Gradient < 1°C</p>
 - Heat transfer ~8000W/m2K
 - Already tested for AMS-TTCS
- A room temperature CO₂ cooling system easy to realize.
 - Pump (LEWA LDC-1 with damper)
 - Heat exchanger (SWEP BDW16 DW-U)
 - Transfer tube (Concentric pipe in pipe)
 - Cold water (Available standard in lab)
 - Bottle (You get it for free if you order CO₂)