Track analysis from the beam tests with the Japanese GEM's and the Altro electronics

(Performed by Tuva Richert and Lene Bryngemark)

(Presented by Leif Jönsson)

The set-up

The front end card

PCA16: Charge sensitive amplifier

Parameter choice:

Gain: 12, 15, 19, 27 mV/fC

Shaping time: 30, 60, 90, 120 ns

Can also be run in non-shaping mode with variable decay time

Altro:

ADC digitizes the PCA16 analogue signal of 1.2 V to a 10 bit digital value

Sampling frequency: 20 MHz (40 MHz)

Buffers data while waiting for store/discard

decision

Perform pedestal subtraction and zero suppresion

What it looks like in real life

Backplanes

RCU (Readut Control Unit)

SIU
(Source Interface Unit)

Modules and pad arrangement

Track visualization

5 GeV electrons B=0 Tesla Drift length 200mm

5 GeV electrons B=1 Tesla Drift length 200 mm

Cluster finding and track reconstruction

- Find peak of charge distribution for each pad row ⇒ cluster
- Calculate the weighted mean position of the cluster; $\langle y \rangle = \sum Q_i y_i / \sum Q_i$ where y_i is the pad position and Q_i is the charge on pad i
- Translate position to space coordinates
- Fit a polynomial \Rightarrow distance from the "real track" to reconstructed track = ΔY (residual)
- Histogram the residuals
- Fit a Gaussian
- The standard deviation corresponds to the position resolution

Track studies

B=1 fit to all points

B=1 fit with distorted regions removed

Position resolution

 Δy versus pad layer

Distribution of residuals; module 1

Δy versus pad layer in selected range

Distribution of residuals, module 3

Drift time (z-coordinate)

100

-100

-200

The noise region can be removed by applying a cut in time (or z)

-110

-200

-100

X, mm

100

200

Drift time measurement

The drift time is taken to be the mean of a Gaussian distribution in the z-direction fitted to the first non-zero sample of every readout channel in a run

The offset is due to the time it takes for the electrons to travel from the trigger telescope to the TPC and for the electronics to respond to a trigger signal

- \Rightarrow drift velocity: 7.62±0.09 cm/ μ s
- \Rightarrow drift length of 3.8 mm per time sample (at 20 MHz readout)

The z-resolution

- Fit a first order polynomial to the cluster coordinates in the z direction
- ullet Histogram deviations of cluster times to the fitted line \Rightarrow distribution in Δz
- ullet Fit a gaussian to the Δz distribution
- \bullet The standard deviation (σ) gives the resolution

Result: 0.242 ± 0.002 time samples $\Rightarrow 0.920\pm0.007$ mm

Conclusions

- Tracks read out by GEM's and the Altro electronics have been studied.
- \bullet Results on position resolution in the x-y plane of 120-130 μm was obtained
- The drift velocity was measured to 7.62 ± 0.09 cm/ μ s and the resoultion in the z-direction was determined to 0.920 ± 0.007 mm
- For B=0 Tesla, some deviations from a straight track is observed, which might indicate misalignment or rotations of the modules with respect to each other
- For B=1 Tesla, distorsion of the tracks are observed at the edges of the modules. This might be due to the influence of the GEM support structure on the electric field.