REVIEW OF LP1 WORK TO DATE

D. Karlen

LCTPC meeting

21-Sept-2009

Purpose

Provoke and facilitate discussion

- honest/frank discussion of what has transpired to date:
 - what worked
 - what did not
 - what does not make sense
- focus on the latter 2 points
 - presentation is deliberately provocative
 - please interrupt and explain why my comments are wrong!
 - please interrupt to bring up related concerns

Facility

What worked:

- DESY group delivered on major aspects (FC, gas, HV, ...)
- Other groups delivered their elements (KEK magnet and Cornell endplate, in particular)
- Joint design and construction was a success
- Problems
 - Central cathode
 - design is not suitable for ILC TPC
 - small gap to ground surface limits drift field to about 220 V/cm
 - mirror image of intended aluminum pattern

Facility

Problems (cont.)

- Test beam
 - intensity is modest and beam pulse length is too broad to make studies on the effects of positive ions relevant to the ILC
- Overall the LCTPC facility is very suitable for the intended purposes
 - studying tiled layouts in a larger TPC
 - understanding and correcting field distortions

Calibration system

Two systems proposed:

- dot pattern on cathode produce photoelectrons when flashed by UV laser
 - success in getting system to work
 - I faulty fibre the other one illuminates sufficiently
 - opposite polarity pulses with MM needs to be corrected
- Iaser beams that directly ionize the gas
 - Iast minute idea
 - not yet deployed (perhaps never will be)

Calibration system

Major problem:

- no manpower identified for analysis of calibration data
 - so far, only qualitative analyses
 - wealth of information could be acquired:
 - drift velocity
 - total system gain
 - drift distortions
- without an active participant operating the system and looking at the calibration data, this system will not live up to its potential
 - UVic resources are currently tied up with T2K any assistance that others could provide would be welcome

Asian GEM module tests

- 7
- Attempt at design than minimizes phi gaps
 - GEM frames only on radial sides, but found to be difficult to keep flat
 - GEMs are very stiff and therefore difficult to stretch to make flat without large rigid frames
 - If one wants to limit the amount of frame material, I think the flatness criteria must be relaxed
 - a wire plane can be added to terminate the field properly and act as a gating grid – eliminating the need for very flat GEM surfaces
 - I do not understand the benefit of using a GEM gate

Asian GEM module tests

Very small pad sizes

Iarge number of pads hit per row – not needed for B=1 operation

- Very large electrostatic distortions seen:
 - If you can see the distortion by eye on an event display (mm scale), it is unlikely that the setup will be useful for developing a design that requires distortions to be at the 10 µm scale
 - is it worth the time to develop sophisticated corrections?

LP1 review 9/21/2009

Asian GEM module tests

- Developing a Kalman filter tracker software package
 - □ at ILC, the energy loss in a gaseous TPC is not important
 - is a Kalman filter useful?

Altro electronics

A demonstration of higher density electronics, but not in a configuration that would be appropriate for an ILC TPC

Small connectors make this a very convenient for use with a variety of detectors and pad layouts – so far only one detector system has used the electronics

GEM + Timepix

- Timepix is an interesting technology to bring in unprecedented segmentation of TPC readout
 - potential improvement in performance with cluster counting because a reduction in variance in the signals arising from
 - ionization fluctuations
 - gain fluctuations
 - improvement in dE/dx and tracking has not been demonstrated in a device or in detailed simulation, as far as I know

GEM + Timepix

- Cluster counting is more difficult with GEMs than with MM, because of the diffusion in the induction gaps
 INGRID concept a better match to cluster counting?
- Large gains are required to resolve single primary electrons
 - problem is worse with GEM diffusion
 - can large area micropattern detectors operate reliably for long periods at such high gain?

GEM + Timepix

Comment on slide 15:

- "Primary electrons with longer drift can be better separated"
 - Cluster counting is different from primary electron counting
 - With diffusion the electrons from a cluster will separate from each other, but it will be incorrect to count them as separate clusters

MM + T2K electronics

- An alternative electronics design based on the AFTER ASCI that has SCA analog buffer
 - such electronics are not compatible with the continuous DAQ concept under consideration for ILC detectors
- Significant cost/effort to make custom boards to allow readout of multiple modules on LP1
 - not clear if this is worthwhile, now that ALTRO based electronics is available
- Resistive anode MM looks promising

TDC based electronics

- ASDQ chip shaping time is too short
 - not appropriate for TPC readout with drift distances of a few cm or more

What has been learned?

The groups have gained experience in building and operating their components

- The key goals are only starting to be addressed:
 precision tracking across multiple modules
 monitoring and correction for field distortions
- A significant increase in software development and data analysis effort is needed