Software for LC-TPC Test Beams

Martin Killenberg

LC-TPC Collaboration Meeting DESY, Hamburg, 21.09.2009

3

The Goal

Common software for LC-TPC prototype data taking, reconstruction and analysis.

The Way

Use ILCSoft:

- DAQ: EUDAQ
- Store data: LCIO
- **③** Framework: Marlin
- **Geometry description: GEAR**
- Onditions data: LCCD
- **O** Reconstruction and analysis for TPCs: **MarlinTPC**

Operate several modules with different DAQ systems in the TPC (+ silicon strip sensors outside)

- Run Control
 - Each subsystem has to know when to start and stop
- Event Building
 - Subevents from different compenents have to be combined
- Synchronisation
 - Software synchronisation: Event numbers must match
 - Hardware: Mutual wait of the subdetectors Slowest detector limits the overall event rate
 - \Rightarrow Trigger Logic Unit

EUDAQ: The EUDET Data Acquisition System

DataProducer: Data class which can easily be integrated in DAQ systems

- Receives commands from Run Control
- Sends data to Data Collector
- Sends messages to Log Collector

DataCollector:

- Receives raw data
- Performs event building
- New: Plugin mechanism LCIO converter plugin for every raw data format
- Data collector writes common LCIO file

- Each subsystem has to provide a Data Producer and an LCIO Converter Plugin
- Each subsystem has to synchronise with the TLU

DAQ	Pr	oduc	er	Converter Plugi			H\	N Syı	nc.
ALTRO		X			\checkmark	1		\checkmark	
AFTER		×			×			×	
TDCs		×			×			×	
Timepix		\checkmark			\checkmark			\checkmark	

(1) Does not work for new data format 4.2 after firmware update

Modular Analysis and Reconstruction for the LINear collider

Marlin is a C++ reconstruction framework for LCIO data.

- Controls the data flow
- Each computing task is performed by a "processor"
- Interface between the processors: LCEvent
- Programme flow is controlled with XML steering files
- Provides an interface to GEAR and LCCD

LCIO

LOTPC-

Linear Collider Input/Output

- Event Data Model
- Provides Data Classes
- \bullet Implementations for JAVA and C++

Data Class	Description
LCEvent	Contains collections of one event (bunch crossing)
I C Collection	Collection of data classes of a certain type
Leconection	e. g. TrackerRawData
MCParticle	Particle from the MC generator
SimTrackerHit	Charge deposition in the detector
TrackerRawData	ADC values from the TPC
TrackerData	Calibrated raw data
TrackerPulse	Charge and time of a pulse in one electronics channel
TrackerHit	3D hit with charge information
Track	Helix parametrisation of the fitted track
LCGenericObject	User defined data class

Object browser to look at the data is missing!

< 17 >

universität

DAQ System	DAQ writes	LCIO converter		Module	Or	ı the GR	ID
AFTER	raw data	\checkmark		Micromegas		NO	
ALTRO	raw data	✓ ¹		Japanese GEM		YES	
				Std. GEM		NO	
TDC	raw data	\checkmark		Micromegas			
Timepix	LCIO			$2 \; Quad + GEMs$		NO	

(1) Does not work for new data format 4.2 after firmware update

Pad Layouts in GEAR

 RectangularPadRowLayout Cartesian Geometry All pads in one row are equal Pad size and number of pads may vary from row to row 	
 FixedPadSizeDiskLayout Polar Geometry Complete circle All pads have the same size 	
 FixedPadAngleDiskLayout Polar Geometry Segment of a circle All pads have the same angle 	
 VersatileDiskRowLayout Polar Geometry Segment of a circle All pads in one row are equal Pad size and number of pads may vary from row to row 	unversitatbonn
	(日) (日) (日) (日) (日) (日)

Software for LC-TPC

- A pad plane provides local coordinates
- Pad planes are embedded in modules
- Modules can be
 - rotated
 - translated
 - have different pad planes
 - have different coordinate types (Cartesian/polar)
- GEAR provides conversions
 - local \rightarrow global
 - global \rightarrow local

Exact geometry (size and position of pads) is provided by an XML file

Module	XI	ML F	ile	Publicly available					
Micromegas		\checkmark			NO				
Japanese GEM		×			NO				
Std. GEM		\checkmark			NO				
Timepix + GEMs		\checkmark			NO				

LCCD

The Linear Collider Conditions Data toolkit

- ullet User-defined data classes can be stored in LCIO files or a data base \searrow
- A Marlin processor provides this information during runtime

Data needed	TPCCo	ondData	Available for test beam run												
			Japanese GEM Mic				Micro-	- Std. GEM				Timepix			
			A	LTR)	TDC		megas	5					+ GEM	
Channel mapping		\checkmark		\checkmark		 ✓ 		\checkmark			\checkmark				
Channel quality		\checkmark		×		×		×			×			×	
Pedestals		\checkmark		×		×		×			×			×	
v_{drift} + Diffusion		\checkmark		×		×		×			×			×	
Gas conditions		<mark>√</mark>		\checkmark		\checkmark		\checkmark			\checkmark			\checkmark	
E-field settings		<mark>√</mark>		×		×		×			×			×	
B-field settings		×													
HV settings		×													
Field maps		\checkmark						>	<						
Electronics		×													
Calibration		×													

LCCD

The Linear Collider Conditions Data toolkit

- ullet User-defined data classes can be stored in LCIO files or a data base \searrow
- A Marlin processor provides this information during runtime

Data needed	TPCCon	dData	Available for test beam run									Available for test beam run										
			Japanese GE			GEM		Micro-		Std. GEM			Timepix									
			A	ALTRO		TDC		megas	5				+ GEN		N							
Channel mapping	\checkmark			\checkmark		√		\checkmark			\checkmark											
Channel quality	\checkmark			×		×		×			×			×								
Pedestals	\checkmark			×		×		×			×			×								
v_{drift} + Diffusion	\checkmark			×		×		×			×			×								
Gas conditions	✓			\checkmark		\checkmark		\checkmark			\checkmark			\checkmark								
E-field settings	✓			×		×		×			×			×								
B-field settings	×																					
HV settings	×			— Те	≏st	data h	ase	for L	cc	Ъσ	as da	ata r	unr	ning	<u> </u> _							
Field maps	\checkmark		on a DESY desktop computer																			
Electronics	×																					
Calibration	×																					

Martin Killenberg (Universität Bonn)

Software for LC-TPC

Processor	Tested with	Geometry	Multi	Limitations
			Module	
PedestalSubtractor	real data	indep.	\checkmark	
PulseFinder	real data	indep.	\checkmark	
ChannelMapper	real data	indep.	\checkmark	
TopoFinder	Toy MC	all	\checkmark	one track per module
TrackFinderHough	real data	indep.	indep.	only straight tracks
TrackSeeder	Toy MC	indep.	indep.	unstable on real data
LikelihoodFitter	MC	all	×	requires good
				gain calibration
Chi ² -Fitter		not o	perational	yet
LinearRegression	real data	indep.	indep.	only straight tracks
				no errors
ClusterFinder	real data	Timepix	√	only per chip
ClusterSeparator	real data	Timepix	✓	bad performance
HitCalculator	real data	Timepix	indep.	

Software for LC-TPC

Image: A mathematical states and a mathem

(< ≥) < ≥)</p>

2

Most available processors simply fill histograms (x-, y-, z-distributions, track parameters, carge per hit etc.)

Software infrastructure

Templates, processors and helper classes which simplify the analysis.

Example:

- CutApplicationProcessor
 - Most common cuts can be used right away
 - No need to implement cuts manually in your code
 - No need to recompile

Processor	Tested with	Tested with Geometry		Multi		Limitations		
							Aodule	
PedestalCalculator	real data	inde	ep.		\checkmark			
Likelihood Fitter		Use	eld map					
Gas Gain Calibration			missi	ng				
Electronics Calibration			missi	ng				
Drift Velocity Calibration			missi	ng				
Dead / Noisy Channels			missi	ng				

Toy MonteCarlos don't need calibration. Calibration has to be developed with real data!

Event Display

For development of geometry descriptions and fist checks during data taking a graphical viewer is needed.

HepRepOutputProcessor produces HepRep XML file which can be displayed e. g. with Wired/JAS3

Event display shows

- TPC
- GEAR pad plane
- Charge on pads
- 3D hits
- Tracks

niversitä

There is an online log book at https://ttfinfo.desy.de/LP1elog/index.jsp

- It turned out to be cumbersome to use
- Sometimes fails at all
- Mostly unused

We need a Run Data Base with the possibility to

- store data files with the entries
- sytematically browse the runs
- automatically store information from the run control

Documentation

- Doxygen documentation exists for all clases
 - Ok for experienced users if the source code provides the infos for Doxygen
 - Some classes are not documented
 - Does not provide an overview (MarlinTPC: more than 50 processors)
 - Does not give an idea about the concept
- There is no manual
- The ILCSoft Wiki pages are empty
- Examples are not running
- You have to know which packages to install

It is realy hard to get started!

Conclusions

- DAQ
 - LCIO converters exist
 - Producers for EUDAQ are still missing
- MarlinTPC: Basic reconstrustion chain is working
 - Most of the processors tested with MC data
 - Performance has to be improved
- GEAR
 - Framework can describe all exsting pad layouts
 - Multiple modules incl. coordinate transformations
 - Users have to provide geometry descriptions
- Conditions data has to be made available
 - Define missing data classes for calibration
 - Set up a data base
- Calibration tools have to be made using real data
- Documentation is laregely missing
 - Write introduction / overview and tutorials
 - Provide running examples for all processors

