
Issues of
Reconstruction Software

Keisuke Fujii
2009/09/21 @ KEK

Skip simulation software issues (primary ions, ion disk, non-uniform B-field,
and resultant distortion, etc.) -> Tomorrow by Thorsten Krauscheid

1

Our Goal
LP1 Test Beam Analyses

We want to test primarily those features which we can test only
with the large prototype:

Multi-module tracking in the presence of significant distortion
due to non-uniform B-field; need to establish the correction
procedure.
Resultant momentum resolution to be consistent with our
design goal when extrapolated to ILC-TPC.
Effects of module boundaries
Gating in the multi-module environment?

Nevertheless we need to start with confirming the SP results,
which is what we are mainly doing right now.

Feed back to LC-TPC design
Feed back to ILC tracking software

For the moment, the ILD tracking code is FORTRAN. It is useful
if we can replace it with the C++ code with higher functionalities
imported from the LP1 software.

2

A Little Bit about History
The end of 2008 - the beginning of 2009: There was some general delay in the
whole LP1 preparation

The LCIO-based DAQ system was(/is?) not yet available.
For the coming test beam we decided to use the local non-LCIO-based DAQ
software developed at LUND for the ALTRO system R&D and to convert the
data to LCIO so as to use MarlinTPC for the analyses. Notice that the
software delay was coupled with hardware delay. Asian GEM modules were
no exception: they became available just before the test beam.
Meanwhile Yukihiro Kato started testing MarlinTPC by trying to look at our
small prototype (MP-TPC) data but there was a mismatch in the LCIO
versions.
We started looking at beta ray tracks with the 1st Asian GEM module that
became available at the head of 2009. A working event monitor software
was in desperate need. We created a very primitive monitor program called
yokaRawMon.
It turned out that no LUND to LCIO format convertor was available at that
point. Martin was working on it, communicating with LUND experts.
Yukihiro Kato continued investigating MarlinTPC usability for the analysis. It
turned out at this point that there was no usable helix/circle fitter
implemented as opposed to our expectations that basic functionalities of
“Multifit” had been implemented and tested for some small prototype.

3

History (Continued)
Feb.-Mar. 2009: The 1st test beam with Asian GEM modules.

We concluded that we need to implement helix/circle fitter in MarlinTPC for
the test beam analysis. We asked for a template complying with MarlinTPC
design philosophy and coding rules to start with.
While waiting for the template the test beam started and we got in a
situation where we had to do a kind of blind flight with only a very primitive
semi-online (yokaRawMon) data monitor. Since the central module had a
problem in this period, we decided that the data in this period should be
used for debugging purpose.

Apr. 2009: The 2nd test beam with Asian GEM modules with the bad connection
in the central module (module 3) fixed.

The template for MarlinTPC was not yet available. We waited until the last
minuets but had to decide to cook up a quick and dirty analysis program
with a Kalman filter based helix fitter to make sure the data taken this time
were OK, before the end of the test beam. This is how yokaRawMonNeo was
born (product of a couple of days’ effort). It was also necessary for TILC09.

Apr. 2009 - Now: Analyses of the test beam data.
There is no essential development of the code except for the implementation
of multi-module tracking.
We are still waiting for the template, which may be already somewhere.
We are planning to implement what we have into MarlinTPC as originally
planned.

4

LCIO Issues
An OO language like C++ imposes the software designer’s philosophy
to its users/co-developers, which has both bright side and dark side.
The original design philosophy of LCIO:

We should not constrain various world-wide activities too much
by imposing too many rules and design guide lines in particular
when people are experimenting on various possibilities.
Instead, we should define and standardize input/output data
structures at various stages of data simulation, reconstruction,
and analysis, and facilitate the data exchange between various
groups to test various software designs and algorithms.
LCIO defines data containers for transferring data between
various stages (=processors) in order to make processors mutually
as independent as possible.

LCIO weak points
Containers lack high-level functionalities.
Makes inter-processor interaction difficult at the cost of inter-
module independency.
Relation to ROOT: I think some misunderstanding here.

5

Necessary Functionalities
Wish List

For LP1 Test Beam Analyses
Data Monitoring (3D event display, various plots...)

Direct access to events, zoom up/down, rotate, ...
Direct access to objects like tracks, hits, clusters, pulses, ...
Plug-and-play user defined monitors

Facility to handle non-uniform B-field
Non-helical track model with B-field map implementation.
Distortion correctors.

Well designed virtual software layers to make the steering part of the
software as independent as possible from particular hardware configurations.
Facilities for basic analyses on pad response, point resolution

Facility to easily add and remove hits from track fitting for instance with
inverse Kalman filter
Direct access to objects like tracks, hits, clusters, pulses, ...
Direct access to track parameters at each hit point as available from
Kalman filter smoothing for angle dependence ...

A mechanism that allows direct inter-processor interactions of high-level
objects? super-processor including functions of multiple processors.

For feed back to LC-TPC design
For feed back to ILC tracking software

6

Set of 1d-
clusters

Set of 3d-
clusters

Set of hit
coord. Vectors

Hit = subset of 1d clusters

Coord. Calc.

Hit Making = 3d Clustering x Coordinate Calculation

3d Clustering

“JCluster”s “JHit”s

Basic Concepts in Tracking

7

Set of
Hits

Set of
Tracks

Set of Track
Parm. Vectors

Track = subset of hits

Track Fitting

Tracking = Track Fitting x Track Finding

Track Finding

Inter-processor Interactions of Intelligent Objects

-> e.g. Kalman Filter

“JHit”s “JTrack”s

8

Future Direction
Need a score sheat on what we need, what is available, what is being
worked on, and what is to be assigned to someone or some group.
 --> Martin’s talk
 Maybe this is one good chance for us to create one.

9

