

LCTPC Collaboration Meeting – DESY

Hamburg, 22.09.2009

Robert Volkenborn

First mechanical FEM studies on the advanced ILD-TPC

outline

- 1) Introduction
- 2) Proceeding and mechanical parameters
- 3) Three different "models"
- 4) Mechanical support of the ILD-TPC
- 5) Simulations
- 6) Summary and outlook

1 Introduction

The goal is, to gather some information about

- the mechanical stability of the ILD-TPC model
- The stress in the used material
- The strain energy
- The distortion of the fieldcage / endplate

...simulated with FEM

2 Proceeding and mechanical parameters

- three different models \rightarrow progressive enhancements
- Different mechanical support of the ILD-TPC → suspended and supported system
- Different mechanical attachment on the fieldcage or endplate respectively
- Simple design!
 - » use of well known materials only
 - » all calculations base on an isotropic behavior of the used material (honeycomb shows in fact orthotropic behavior!)
 - » no further mass of cables, electronics, gas etc. included

Parameters of the endplate / fieldcage

Endplate

- Material: Epoxy glass fiber (*I-DEAS* Desy data base material)
- Radius
 - Roo: 1808 mm
 - Roi: 1743 mm
 - Rio: 395 mm
 - Rii: 330 mm
- Thickness: 100 mm

Front view

Roi

Rii

Fieldcage

- Material: different ply materials...
 → Creating of a test-laminate for the TPC casing...
- Total length: 4695 mm
- Thickness: up to 44mm (regarding to the model)

Parameter of the used material

 The nomex honeycomb used in the current LCTPC is a very complex material (orthotropic behavior and not all mechanical values available yet)

Definition of different ply materials:

outer casing LaminateRV3 LaminateRV1 0.5mm GraphiteSemiconductor (Laminate RV1) 5mm epoxy glass fiber 0.5mm GraphiteSemiconductor inner casing (LaminateRV2) LaminateRV2 2mm epoxy glass fiber 30mm GraphiteSemiconductor 2mm epoxy glass fiber LaminateRV3 2mm epoxy glass fiber 40mm honeycomb similar structure 2mm epoxy glass fiber

3 Three different ILD-TPC models

1st model

 Simple hollow cylinder without endplates

2nd model

 Inner and outer cylinder with solid endplates

3rd model

 Inner and outer cylinder with advanced endplates

4 Mechanical support of the ILD-TPC

- Either a <u>supported</u> or a <u>suspended</u> system attached on the endplates or at the fieldcage
- No well-thought-out solution yet of the attachment to the TPC, so ...
- Simulation of a "virtual" attachment to the endplates or the fieldcage

a "virtual" suspended attachment on the fieldcage

a "virtual" supported attachment on the endplates

5 Simulations

1st model: suspended ("hanging") fieldcage

2nd model:	 suspended on the fieldcage on the endplate
	2) supported on the endplates
3rd model:	 suspended on the fieldcage on the endplates
	 2) supported i) on the fieldcage ii) on the endplates

1st model

tensile stress

Boundary Conditions	bilateral <u>hangi</u> surfaces (150) of <u>the fieldcag</u> surfaces cons gravity in +z	ing on two rectang x200)mm on each l <u>e,</u> within 30° of axi trained in all 6 DO	ular side s each. F	3.5E-02 2.6E-02 1.8E-02 8.8E-03 0.0E+00		
Meshing	entity	material	mesh type	element length/type		
	outer casing	LaminatRV3	thin shell	100 / rectangle (4 nodes)		
Results Solver						

max. strain energy max. displacement

1.0 N mm 88 µm 8.8E-02

7.9E-02

7.0E-02

6.1E-02

5.3E-02

4.4E-02

2nd model

tensile stress

compressive stress

Boundary Conditions	bilateral <u>hanging on</u> two circular surfaces (R=30mm) on <u>the endplates</u> within 30° of axis each.		bilateral <u>supported on</u> two circular surfaces (R=30mm) on <u>the endplates</u> within 30° of axis each		
circumfer gravity in		ence constrained in 6 DOF +z		circumference constrained in 6 DOF gravity in –z	
Meshing	entity outer casir inner casir endplates	ng ng	material LaminatRV1 LaminatRV2 Epoxy glass fiber	mesh type thin shell thin shell thin shell	element length/type 50 / triangle std 50 / triangle std 50 / triangle std
Results Solver					
max. stress (von Mises) max. strain energy max. displacement		21.3 N/mm² 0.56 N mm 13 µm		31 N/mm² 0.57 N mm 11 µm	

...2nd model

tensile stress

Boundarybilateral hanging on the fieldcage, within 30° of axis each.150x200)mm on each sConditionsthe fieldcage, within 30° of axis each.					
	surfaces constrained in all 6 DOF gravity in +z				
Meshing	entity	material	mesh type	element length/type	
	outer casing inner casing endplates	LaminatRV1 LaminatRV2 Epoxy glass fiber	thin shell thin shell thin shell	50 / triangle std 50 / triangle std 50 / triangle std	
Results Solver					
max. stress (von Mises) max. strain energy max. displacement	2.5 N/mm² 1.0 N mm 3 um	2			

3rd model

tensile stress

compressive stress

Boundary Conditions	bilateral <u>hanging c</u> (R=30mm) on <u>the</u> axis each.	on two circular surfaces endplate within 30° of	bilateral <u>supported on</u> two circular surfaces (R=30mm) on <u>the endplate</u> within 30° of axis each		
	circumference constrained in 6 DOF gravity in +z		circumference constrained in 6 DOF gravity in –z		
Meshing	entity outer casing inner casing endplates	material LaminatRV1 LaminatRV2 Epoxy glass fiber	mesh type thin shell thin shell thin shell	element length/type 50 / triangle std 50 / triangle std 50 / triangle std	

Results Solver

max. stress (von Mises) max. strain energy max. displacement 280 N/mm² 350 N mm 420 µm 280 N/mm² 350 N mm 420 µm

...3rd model

tensile stress

bilateral hanging on two rectangular Boundary bilateral supported on two rectangular surfaces (100x200)mm on each side of surfaces (100x200)mm on each side of Conditions the fieldcage. the fieldcage, within 30° of axis each. within 30° of axis each. surfaces constrained in all 6 DOF surfaces constrained in all 6 DOF gravity in +z gravity in -z entity material Meshing element length/type mesh type outer casing LaminatRV1 thin shell 50 / rectangle (8nodes) inner casing LaminatRV2 thin shell 50 / rectangle (8nodes) endplates Epoxy glass fiber thin shell 10 and 20 / rectangle (8nodes) **Results Solver** max. stress (von Mises) 770 N/mm² 770N/mm² max. displacement 300 µm 300 µm

compressive stress

6 summary and outlook

- The FEM-simulations were made as a first rough idea!
 - Results are very preliminary and base onto the specific models though
- first results:
 - max. mechanical distortion of a suspended or supported ILD-TPC < 0.5 mm
 - Max. strain energies 350 N mm
 - Max. stress 770 N/mm²
 - A suspended or supported ILD-TPC system shows similar mechanical stability
- further simulations need more details:
 - Advanced ideas about the supported/suspended ILD-TPC system
 - A bigger *know-how* about composite materials (laminate with nomex honeycomb)
 - New (updated) ILD-TPC model?