Second ATF2 project meeting (May 30, 2006)

Mount stabilization for Shintake monitor

Tatsuya KUME

Mechanical Engineering Center,

High Energy Accelerator Research Organization (KEK)

Contents

- About Shintake monitor
- Mount stabilization for interferometer
 - Stand alone stability for basis of total system stabilization
- Relative position stability between interference fringes and electron beam
 - Systematic stability for precise beam size measurement

Specification expected for Shintake Monitor (Laser fringe beam size monitor) in ATF2

 Measure size of the beam converged to 37 nm of diameter (+/- sigma) with accuracy of 10% or better(?) using interference fringes as a reference

Shintake monitor system schematics in FFTB

Interferometer of Shintake monitor

using table (1.6×1.5×0.1 m) to mount optics, total weight of ~740kg

Photograph of the interferometer laid for adjustment, The optical table is supported vertical in usage.

Specifications of Shintake monitor achieved in FFTB (1993-1997)

- Measure size of the electron beam converged to 70 nm in diameter (+/sigma) at the IP.
- Interferometer was mounted on the table (=girder) for the final magnet by steel beam rigidly (=without insulation).
 - Suggests that the configuration adopted in FFTB was enough to measure 70 nm diameter of beam->can be referred for new design.

However

- No evaluation for vibration (=short term fluctuations: 0.1sec-few min) or drift (=long term fluctuations: several10min or longer).
 - -> Must to be surveyed as reference for new design

Design and estimation of stable mount for the interferometer

(Stand alone stability of the interferometer for basis of total system stability)

- Design policy
 - Based on the design for FFTB except mounting directly on floor
 - (Limited by capacity of the girder)
 - Mount on stone table with steel beam (angle)
 - Not using vibration insulators between interferometer, mount jig, and table
 - Practical design with conventional methods
 - Target of stability: micro-meter order of stability->basis of total stabilization
- Estimation points
 - Evaluate affect of floor vibration
 - difference in mount and vibration between FFTB and ATF2
 - Decide design policy for stand alone stabilization
 - Necessity of vibration insulator between the table and floor

Stability control for beam size measurement

(systematic stability for beam size measurement)

- Design policy
 - Target stability: relative position stability between interference fringes and electron beam enough to measure 37 nm diameter of beam size.
 - 10% of 37nm->3-4 nm of tolerance?

(Not necessarily to stabilize the interference fringes nor electron beam absolutely.)

- By using any methods including R&D if necessary.
- Reference for alignment
 - It's necessary to decide (or define) position reference for alignment (=datum) between interference fringes (=Shintake monitor) and electron beam (=final magnets).

Decide targets for stabilizing

- Decide (or estimate) targets for stabilizing.
 - Term: How long should the system be stabilized?
 - Amplitude: How precise should the system be stabilized?
 - Others.

Summary

- Interferometer is going to be mounted with stability of few micro-meters in the first design using conventional methods for basis of system stabilization.
- It seems necessary to stabilize relative position between interference fringes and electron to be few nano-meters from the expected resolution.
- It's necessary to define position reference for systematic stabilization.
- It's necessary to decide target in stability (term, amplitude, etc.).