Fast feedback/feedforward systems

Philip Burrows

John Adams Institute
Oxford University

Overview

LCABD: Daresbury, Oxford, (QMUL)

Collaborators: SLAC, KEK, Tokyo Met, DESY, CERN

Task: prototype beam-based (intra-train) feedback system

Completed: ultra-fast analogue feedback prototypes

FONT2 / NLCTA: 54ns latency

FONT3 / ATF: 23ns latency

Ongoing: ILC digital feedback prototypes

FONT4 / ATF: 1st digital FB processor

FONT@ESA: EM background impact on FB BPMs

FONT goals

Prototype components required for ILC intra-train beam feedback system(s):

BPMs, signal processor, feedback circuit, amplifier, kicker

and demonstrate system performance with real beam

NB technology applicable more widely through ILC: RTML feed-forward, linac orbit FB, linac train straightener, BDS orbit FB, IP pulse-pulse FB ...

Feedback experiments

FONT3: beamline at KEK ATF (June 05)

FONT3 position correction performance

(June 3 2005)

FONT3: raw data (June 3 2005)

ILC digital feedback prototype tests

Digital system test plan

FONT4 (2005-6):

modified FONT3 BPM processor digital FB processor solid-state amplifier adjustable-gap kicker

ATF: initial tests with 3 bunches with spacing c. 150ns

aiming for latency <120ns (electronics); stabilisation of 3rd bunch at um level

Digital board tests April, June 2006 Closed-loop tests Dec 2006

FONT5 (2008-9):

improved FB system + algorithm development; + feed-forward? tests with 20-60 bunch trains at ATF(2), or TTF2

FONT4: latency budget

Time of flight kicker – BPM: 7ns

Signal return time BPM – kicker: 15ns

Irreducible latency: 22ns

• BPM processor: 7ns

ADC/DAC (3.5 89 MHz cycles) 40ns

Signal processing (8 357 MHz cycles) 25ns

• FPGA i/o 3ns

Amplifier 40ns

Kicker fill time 3ns

Electronics latency: 118ns

• Total latency budget: 140ns

FONT4: BPM analogue signal processor

FONT4: BPM processor latency measurement (December 2005)

FONT4: new BPM analogue signal processor

We are replacing connectorised version with PCB:

- Order placed 28/5/06
- Boards loaded 5/6/06
- Test at ATF 12/6/06

FONT4: digital feedback processor

FONT4: digital feedback processor

1st beam test results (20 April 2006)

Position calibration

Lyrtech Signalmaster Board + Xilinx FPGA

Lyrtech bench test

P.N

Lyrtech bench test results

Lyrtech beam test results (14/4/06)

FONT4 test plan

June 2006:

```
    1st test of PCB version of analogue BPM processor
    2nd tests of digital FB: timing, synchronisation, triggering, gain adjustment in FPGA
    (ADC clocking @ 714/10 = 71 MHz)
```

December 2006:

1st test of FONT4 amplifier
3rd tests of digital FB: ADC clocking @ 357/4 = 90 MHz
2nd tests of PCB BPM processor
Closed-loop FB

March/April 2007:

Closed-loop FB

FONT5 test plan

The next major development would be FB tests using a long ILC-like train of 20-60 bunches

Depends on success of fast-extraction kicker tests

2008/9?

I will discuss ATF2-specific needs in next talk ...

FONT bench test system

Dedicated bench test lab being set up in Oxford:
fast impulse generator for simulation of beam signals
signal generator for machine-phased clocks (714MHz)
analogue front-end + digital board
fast scope for DAQ

-> bench test complete FB system

Develop and test robust feedback algorithms: include noise effects, long-range bunch correlations, 'adaptive' gain, feed-forward ...

Feed-forward system (1)

A feed-forward system has been discussed in vague terms for some time!

A ring -> extraction line system is conceivable based on FONT/FEATHER-type technology

In multi-bunch mode a feed-forward system JUST in extraction line is also conceivable (operationally like a feedback)

Is feed-forward necessary?

- 1) ATF / ATF2 operations?
- 2) ILC prototype (eg. RTML system)?

Feed-forward system (2)

What do we want to stabilise?

Energy? (Kalinin idea)

Vertical position/angle?

Horizontal position/angle?

Need to know dominant jitter source(s):

```
Eg. if extraction kicker,
ring -> extraction line no use!
upstream -> downstream in extr. line (multi-bunch mode) OK
```

EM Background Environment for FB BPM

FONT Test Module for ESA

First beam tests July 7 – 21 2006

P.N. Burrows

Strategic ILC FB outlook

- Continuing intra-train IP FB hardware prototyping deemed 'critical' in BCD – FONT programme ongoing at ATF, ESA, ATF2
- Optimisation of BPM design(s) for feedback/feed-forward systems
- Need to design bunch-by-bunch luminosity signal into IP FB
- Intra-train FB technology required for BDS, linac, RTML FF ...
- Hardware directly applicable to 5Hz feedbacks throughout machine
- Development of robust algorithms critical test setup in Oxford
- Integrated design of whole alignment + feedback strategy critical

BeamStrahlung (White)

Possible additional developments

Add (beam related?) 'luminosity' signal input to FB system at ATF(2)

Add angle FB

Extra material

Intra-train feedback simulations

FONT2 beamline at **SLAC NLCTA**

FONT2 position correction performance

