Status of Q-BPM / IP-BPM

Y.Honda 2006/May./30 ATF2 meeting

RF measurement of Q-BPM

3.5

2.5

1.5

0.5

- Cavity
 - Received I I BPMs with long tube on 3/24
- Measurement
 - RF measurements were done before/after the cavity tuning procedure at PAL. The plots show distribution of f, QL, Qext and XYisolation for the 11 BPMs.
 - green: before tuning
 - red: after tuning
 - Same measurements were repeated at KEK (by a Tokyo univ. student), the results were confirmed.

Frequency

Qext

design (prototype)

Q-BPM alignment test plan

- Alignment procedure
 - As presented in the 1st meeting.
 - pole tip position is mirrored to the BPM adapter
 - adapter guides the BPM outer surface
 - expected precision: <100um with respect to the mechanical center of the pole tips
- To be checked
 - Magnet's field center has been measured with respect to the reference plate on its top
 - Need to connect the reference plate and mechanical center of pole tips
 - Preparing an alignment target holder shaped as the BPM
 - connect reference plate and actual position of BPM
 - check repeatability, etc.

•

laser alignment target holder same shape as the BPM

Q-BPM beam test

- Combined test of ATF2 Q-BPM (prototype) and electronics (ver.2 prototype)
 - use only I BPM, so not the actual resolution measurement
 - comparing two y-ports, we could estimate resolution limited by electronics and analysis
- Test items
 - confirm required resolution (100nm)
 - resolution v.s. beam offset
 - resolution can be worsened in saturated case

Q-BPM beam test

- 6 sets of beam orbit maximum offset was 250um, signal started to saturate at 100um offset
- Result
 - (rms of YI-Y2 distribution)/sqrt(2) gives resolution
 - not-saturated case: I 30nm resolution
 - saturated case: I.2um resolution
 - I/sqrt(2) better resolution can be expected if the two channels were combined
 - overall, the result looks good

Status of IP-BPM

- First test model
 - 3D geometrical measurement: all satisfies the design, typically within 20um error.
 - frequency: 5.704GHz, 6.420GHz (design: 5.712GHz, 6.426GHz)
 - x-y isolation: -40dB without frequency filter, should be much better with the filter
 - interference between the cavities: less than -90dB not detectable
 - Qext of Y-port: 2800 (simulation 2400), reasonable
 - Qext of X-port: 1500 (simulation 3900), waveguide resonance affected.
- Prototype vacuum model
 - modification in wave guide length, frequency adjustment
 - fabrication already started

Status of IP-BPM

- Beam test plan in June
 - put the test model in a vacuum vessel and install in ATF linac-end
- Test item in the beam test
 - check sensitivity (compare with Q-BPM)
 - check transient signal (compare with/without BPF)
 - check angle sensitivity (might be difficult to test)
- Electronics
 - already have one set of modules (from BPM to ADC)
 - under testing using an rf source (noise, linearity, etc..)
- Plan after coming summer
 - replace KEK NanoBPM with IP-BPM to measure the resolution.

